• 제목/요약/키워드: Shot Peening

검색결과 186건 처리시간 0.026초

압축잔류응력을 부여한 스프링강의 부식피로 수명평가 (An Evaluation on Corrosion Fatigue life of Spring Steel by Compressive Residual Stress)

  • 박경동;기우태;신영진
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the influence of compressive residual stress and corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3+3%HF,\;6%FeCl_3$. The immersion period was performed for 90days. The fatigue characterization of a spring steel with processed shot peening were performed by considering the several corrosion environments in the range of stress ratio of 0.05 by means of opening mode displacement. By using the methods mentioned above, the following conclusions have been drawn: The fatigue life shows more improvement in the shot peened material than that in the un peened material. And the fatigue life shows improvement in ambient than in corrosion conditions. Threshold stress intensity factor range of the shot peened materials has higher than of the un peened materials. And the threshold stress intensity factor range was decreased in corrosion environments over ambient.

스프링강의 피로파괴에 미치는 압축잔류응력의 영향 (A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel)

  • 진영범;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

가스터빈 압축기 로터용 관통볼트의 건전성 검사 (Integrity Inspection of Through Bolt for Compressor Rotor in Gas Turbine)

  • 김태형;안명재;이재현;황재곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.137-138
    • /
    • 2012
  • 본 연구에서는 가스터빈 압축기 로터용 제작 관통볼트의 건전성 검사가 수행됐다. 육안검사, 치수, 재질, 경도 및 피닝처리 등을 검사했으며 GE 볼트와 비교해 건전성을 판단하였다. 평가 결과 제작볼트는 기준범위 이하의 피닝강도로 처리되었다. 이에 숏피닝 강도를 향상시켜 다시 제작된 수정볼트를 재검사했고 모든 항목에서 기준범위에 포함됨을 확인했다. 궁극적으로 본 연구에서 수행된 가스터빈 압축기 로터용 관통볼트의 건전성 검사가 유효함을 확인하였다.

  • PDF

단결정 CMSX-2의 표면재결정 거동 (The Surface Recrystallization Behavior of Single Crystal CMSX-2)

  • 조창용;나영상;김학민;김우열;배차헌;이상래
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.15-27
    • /
    • 1993
  • The single crystal specimens were solidified by modified Bridgeman method. The surface recrystallized single crystal specimens were prepared by shot peening followed by heat treatment. The surface recrystallization begins at the dendrite cores on the surface. The recrystallized grains grew into the inner side of the specimen. The growth of recrystallized grains was inhibited by the pores and eutectic phases. The primary $\gamma'$ phases were dissolved at the recrystallized grain boundaries during the grain growth. The grain growth of recrystallized grains was similar to the cellular type transformation. No orientation relationships were found bewteen the recrystallized grains and the parent phase.

  • PDF

SUP9강의 저온피로크랙 전파특성에 관한 연구 (A Study on the Fatigue Crack Propagation Characteristics for SUP9 Steel at Low Temperature)

  • 박경동;박상오
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.80-87
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) which was used in suspension of automobile for room temperature and low temperature service. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, ­3$0^{\circ}C$, ­5$0^{\circ}C$, ­7$0^{\circ}C$ and ­10$0^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

냉간단조 베벨기어의 굽힘피로강도 평가 (An Evaluation of Bending Fatigue Strength for Cold Forged Bevel Gear)

  • 김재훈;사정우;김덕회;이상연
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.61-67
    • /
    • 2000
  • Gears are the most commonly used parts in automotive and industrial applications. One of most common modes of gear failures is tooth breakage, which is usually produced by the bending fatigue failure. It is important to manufacture the gears which can withstand the applied stresses in view of safety and economic requirement. This paper deals with bending fatigue strength for cold forged bevel gear. Especially, to compare fatigue characteristics for manufacturing processes difference, bending fatigue tests of bevel gears made by three different processes respectively. Results indicate that the fatigue strength of bevel gear is improved by cold forging process. Intergranular fracture is found on fatigue fracture surface, and dimples are observed on final fracture surface. The fatigue failure cannot be considered as a deterministic quantity, but must be characterized statistically. This study proposes a method to estimate bending fatigue lift of the bevel gear using the probability-load-life and Weibull analysis.

  • PDF

해양구조용강의 피로강도향상 공법개발 (The Development Methods of Fatigue Strength Improvement for the Marine Structural Steel)

  • 박경동;정재욱
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.106-111
    • /
    • 2003
  • This study made an experiment On fatigue crack propagation da/dn, stress intensity factor range ${\Delta}K$ respectively in room temperature and in low temperature. And we got the following characteristics from fatigue crack growth test carried Out in the environment of room temperature and law temperature at $25^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ in the range of stress ratio of 0.3 by means of opening made displacement. The threshold stress intensity factor range ${\Delta}Kth$ in the early stage of fatigue crack growth (Mode I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Made II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at law temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

Waviness가 있는 볼베어링으로 지지된 회전계의 동특성 해석 (II)-안정성 해석 - (Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I) -Vibration Analysis-)

  • 정성원;장건희
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2647-2655
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness i n a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time -varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i=1,2,3..).

전기화학 임피던스 분석을 통한 자동차용 코일스프링 강의 부식 평가 (Study on Corrosion of Automotive Coil Spring Steel by Electrochemical Impedance Spectroscopy)

  • 이규혁;박중현;안승호;서지원;장희진
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.298-304
    • /
    • 2017
  • Coil spring steels from the automobile suspension part after field exposure for 10 years and those after anti-corrosion validation test in proving ground of 5,000 ~ 10,000 km were examined for corrosion damages. Partial loss of paint, accumulation of corrosion product, and cracking of paint and superficial material were observed. The surface and subsurface region of spring steels had compressive residual stress and high hardness by shot peening. The surface hardness values of the specimens were 620 ~ 670 Hv. They were 60 ~ 80 Hv higher than those of the samples taken from the middle part of the spring. The maximum compressive stress was -916 ~ -1208 MPa measured at depth of about $100{\mu}m$. Electrochemical impedance spectroscopy showed that the resistances of charge transfer and the paint layer of the spring steels ranged from several tens to millions ${\Omega}{\cdot}cm^2$. The resistance of the field samples was much higher than that of the proving ground samples used in this study, implying that the proving ground test condition would be more corrosive than the field environment.