• Title/Summary/Keyword: Shortest Path Algorithm

검색결과 437건 처리시간 0.036초

Faster pipe auto-routing using improved jump point search

  • Min, Jwa-Geun;Ruy, Won-Sun;Park, Chul Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.596-604
    • /
    • 2020
  • Previous studies on pipe auto-routing algorithms generally used such algorithms as A*, Dijkstra, Genetic Algorithm, Particle Swarm Optimization, and Ant Colony Optimization, to satisfy the relevant constraints of its own field and improve the output quality. On the other hand, this study aimed to significantly improve path-finding speed by applying the Jump Point Search (JPS) algorithm, which requires lower search cost than the abovementioned algorithms, for pipe routing. The existing JPS, however, is limited to two-dimensional spaces and can only find the shortest path. Thus, it requires several improvements to be applied to pipe routing. Pipe routing is performed in a three-dimensional space, and the path of piping must be parallel to the axis to minimize its interference with other facilities. In addition, the number of elbows must be reduced to the maximum from an economic perspective, and preferred spaces in the path must also be included. The existing JPS was improved for the pipe routing problem such that it can consider the above-mentioned problem. The fast path-finding speed of the proposed algorithm was verified by comparing it with the conventional A* algorithm in terms of resolution.

Distance Transform Path Planning using DEM and Obstacle Map (DEM과 장애물 지도를 이용한 거리변환 경로계획)

  • Choe, Tok-Son;Jee, Tae-Young;Kim, Jun;Park, Yong-Woon;Ryu, Chul-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.92-94
    • /
    • 2005
  • Unmanned ground vehicles(UGVs) are expected to play a key role in the future army. These UGVs would be used for weapons platforms. logistics carriers, reconnaissance, surveillance, and target acquisition in the rough terrain. Most of path planning methodologies for UGVs offer an optimal or sub-optimal shortest-path in a 20 space. However, those methodologies do not consider increment and reduction effects of relative distance when a UGV climbs up or goes down in the slope of rough terrain. In this paper, we propose a novel path planning methodology using the modified distance transform algorithm. Our proposed path planning methodology employs two kinds of map. One is binary obstacle map. The other is the DEM. With these two maps, the modified distance transform algorithm in which distance between cells is increased or decreased by weighting function of slope is suggested. The proposed methodology is verified by various simulations on the randomly generated DEM and obstacle map.

  • PDF

A Bandwidth Adaptive Path Selection Scheme in IEEE 802.16 Relay Networks

  • Lee, Sung-Hee;Ko, Young-Bae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권3호
    • /
    • pp.477-493
    • /
    • 2011
  • The IEEE 802.16 mobile multi-hop relay (MMR) task group 'j' (TGj) has introduced the multi-hop relaying concept in the IEEE 802.16 Wireless MAN, wherein a relay station (RS) is employed to improve network coverage and capacity. Several RSs can be deployed between a base station and mobile stations, and configured to form a tree-like multi-hop topology. In such architecture, we consider the problem of a path selection through which the mobile station in and outside the coverage can communicate with the base station. In this paper, we propose a new path selection algorithm that ensures more efficient distribution of resources such as bandwidth among the relaying nodes for improving the overall performance of the network. Performance of our proposed scheme is compared with the path selection algorithms based on loss rate and the shortest path algorithm. Based on the simulation results using ns-2, we show our proposal significantly improves the performance on throughput, latency and bandwidth consumption.

A Transit Assignment Model using Genetic Algorithm (유전자 알고리즘을 이용한 대중교통 통행배정모형 개발)

  • 이신해;최인준;이승재;임강원
    • Journal of Korean Society of Transportation
    • /
    • 제21권1호
    • /
    • pp.65-75
    • /
    • 2003
  • In these days, public transportation has become important because of serious traffic congestion. But. there are few researches in public transportation compared with researches in auto. Accordingly, the purpose of paper is development of transit assignment model, which considers features of public transportation, time table, transfer capacity of vehicle, common line, etc. The transit assignment model developed in this paper is composed of two parts. One part is search for optimum path, the other part is network loading. A Genetic algorithm has been developed in order to search for alternative shortest path set. After the shortest paths have been obtained in the genetic algorithm, Logit-base stochastic loading model has been used to obtain the assigned volumes.

Study on the Shortest Path finding of Engine Room Patrol Robots Using the A* Algorithm (A* 알고리즘을 이용한 기관실 순찰로봇의 최단 경로 탐색에 관한 연구)

  • Kim, Seon-Deok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제28권2호
    • /
    • pp.370-376
    • /
    • 2022
  • Smart ships related studies are being conducted in various fields owing to the development of technology, and an engine room patrol robot that can patrol the unmanned engine room is one such study. A patrol robot moves around the engine room based on the information learned through artificial intelligence and checks the machine normality and occurrence of abnormalities such as water leakage, oil leakage, and fire. Study on engine room patrol robots is mainly conducted on machine detection using artificial intelligence, however study on movement and control is insufficient. This causes a problem in that even if a patrol robot detects an object, there is no way to move to the detected object. To secure maneuverability to quickly identify the presence of abnormality in the engine room, this study experimented with whether a patrol robot can determine the shortest path by applying the A* algorithm. Data were obtained by driving a small car equipped with LiDAR in the ship engine room and creating a map by mapping the obtained data with SLAM(Simultaneous Localization And Mapping). The starting point and arrival point of the patrol robot were set on the map, and the A* algorithm was applied to determine whether the shortest path from the starting point to the arrival point was found. Simulation confirmed that the shortest route was well searched while avoiding obstacles from the starting point to the arrival point on the map. Applying this to the engine room patrol robot is believed to help improve ship safety.

Ant Algorithm for Dynamic Route Guidance in Traffic Networks with Traffic Constraints (회전 제약을 포함하고 있는 교통 네트워크의 경로 유도를 위한 개미 알고리즘)

  • Kim, Sung-Soo;Ahn, Seung-Bum;Hong, Jung-Ki;Moon, Jae-Ki
    • Journal of Korean Society of Transportation
    • /
    • 제26권5호
    • /
    • pp.185-194
    • /
    • 2008
  • The objective of this paper is to design the dynamic route guidance system(DRGS) and develop an ant algorithm based on routing mechanism for finding the multiple shortest paths within limited time in real traffic network. The proposed ant algorithm finds a collection of paths between source and destination considering turn-restrictions, U-turn, and P-turn until an acceptable solution is reached. This method can consider traffic constraints easily comparing to the conventional shortest paths algorithms.

Design of Near-Minimum Time Path Planning Algorithm for Autonomous Driving (무인 자율 주행을 위한 최단 시간 경로계획 알고리즘 설계)

  • Kim, Dongwook;Kim, Hakgu;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제37권5호
    • /
    • pp.609-617
    • /
    • 2013
  • This paper presents a near-minimum time path planning algorithm for autonomous driving. The problem of near-minimum time path planning is an optimization problem in which it is necessary to take into account not only the geometry of the circuit but also the dynamics of the vehicle. The path planning algorithm consists of a candidate path generation and a velocity optimization algorithm. The candidate path generation algorithm calculates the compromises between the shortest path and the path that allows the highest speeds to be achieved. The velocity optimization algorithm calculates the lap time of each candidate considering the vehicle driving performance and tire friction limit. By using the calculated path and velocity of each candidate, we calculate the lap times and search for a near-minimum time path. The proposed algorithm was evaluated via computer simulation using CarSim and Matlab/Simulink.

Optimal Path Planning of a Tractor-implement for Precision Farming (정밀농업을 위한 트랙터-작업기의 최적 경로계획)

  • 정선옥;박우풍;장영창;여운영
    • Journal of Biosystems Engineering
    • /
    • 제24권4호
    • /
    • pp.301-308
    • /
    • 1999
  • Path planning for field operation of agricultural machinery is an indispensible part for precision farming or autonomous field operation. In this study, two algorithms (I, II) of generating a time-based shortest operation path were suggested to plan an optimal operation of an agricultural tractor-implement in a rectangular shaped field. The algorithms were based on modification of a minimum spanning tree algorithm, and applied for tractor-implement operations. the generated path was consisted of round operation and returning operation sections. The number of round operation was determined from the condition that a tractor can turn smoothly at headlands. The performance of the algorithms was evaluated by the calculation number for path generation and the total path length generated. Their stability was affected by the number of returning operation, but the algorithm II was considered to be more stable. In addition, the performances of the developed algorithms were compared with those of the conventional field operations at selected field sizes and shapes. The results showed that the algorithms could reduce field operation time greatly. For a 100m$\times$40m field, the reduced path length was 78m. The study also included an user interface program for implementing the algorithms and generating GPS coordinates that could be used in GIS softwares for precision farming.

  • PDF

A Study on Dijkstra Algorithm in Crossroad Including Left-turn Restriction, U-turn, and P-turn (교차로에서의 좌회전 금지, U-turn, P-turn을 고려한 개선된 Dijkstra Algorithm에 관한 연구)

  • Kim, Sung-Soo;Jun, Young-Joo;Cha, Young-Min
    • Journal of Industrial Technology
    • /
    • 제21권A호
    • /
    • pp.231-240
    • /
    • 2001
  • U-turn and P-turn as well as left-turn restriction exist in real traffic network. the optimal route should be selected for considering these using shortest path algorithms. But, the traditional algorithms have some limitations to use for considering there. The objective of this paper is to modify Dijkstra algorithm in order to find the optimal path in real traffic network. The continuous three nodes are used to check turn-restrictions and exclude these from and optimal path. A virtual connection is used to consider U-turn and P-turn.

  • PDF

Navigation algorithm for a mobile robot by using the hybrid structure (하이브리드 구조를 사용한 이동 로봇의 주행 방법)

  • Park, Il;Kwon, Young D.;Lee, Jin S.
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • 제33B권7호
    • /
    • pp.1-10
    • /
    • 1996
  • There are many challenging problems in mobile robot navigation. As an example, a mobile robot may wander around in local minimum and may wiggle when it moves through a narrow corridor. In addition, the real time obstacle avoidance and the posture control of mobile robot are also very improtant problems. To address these problems, a navigation algorithm which is composed o freal time obstacle avoidance algorithm and a global path planner (GPP) that genrates the shortest path is presented. In this paper, the global path planner reduce the calculation time by reducing the dta to be handled. Also it can make a real time obstacle avoidance by using the fuzzy logic inference. So the presented algorithm provide a stable navigastion for the mobile robot when it fall into the unstable navigation.

  • PDF