• Title/Summary/Keyword: Short-term traffic

Search Result 135, Processing Time 0.022 seconds

Hybrid CSA optimization with seasonal RVR in traffic flow forecasting

  • Shen, Zhangguo;Wang, Wanliang;Shen, Qing;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4887-4907
    • /
    • 2017
  • Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.

A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity (장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구)

  • Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1053-1061
    • /
    • 2013
  • In this paper, we propose the time series forecasting models for internet traffic with long memory and heteroscedasticity. To control and forecast traffic volume, we first introduce the traffic forecasting models which are determined by the volatility and heteroscedasticity of the traffic. We then analyze and predict the heteroscedasticity and the long memory properties for forecasting traffic volume. Depending on the characteristics of the traffic, Fractional ARIMA model, Fractional ARIMA-GARCH model are applied and compared with the MAPE(Mean Absolute Percentage Error) Criterion.

LSTM based Network Traffic Volume Prediction (LSTM 기반의 네트워크 트래픽 용량 예측)

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Huu-Duy;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.362-364
    • /
    • 2018
  • Predicting network traffic volume has become a popular topic recently due to its support in many situations such as detecting abnormal network activities and provisioning network services. Especially, predicting the volume of the next upcoming traffic from the series of observed recent traffic volume is an interesting and challenging problem. In past, various techniques are researched by using time series forecasting methods such as moving averaging and exponential smoothing. In this paper, we propose a long short-term memory neural network (LSTM) based network traffic volume prediction method. The proposed method employs the changing rate of observed traffic volume, the corresponding time window index, and a seasonality factor indicating the changing trend as input features, and predicts the upcoming network traffic. The experiment results with real datasets proves that our proposed method works better than other time series forecasting methods in predicting upcoming network traffic.

Development of Traffic Speed Prediction Model Reflecting Spatio-temporal Impact based on Deep Neural Network (시공간적 영향력을 반영한 딥러닝 기반의 통행속도 예측 모형 개발)

  • Kim, Youngchan;Kim, Junwon;Han, Yohee;Kim, Jongjun;Hwang, Jewoong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • With the advent of the fourth industrial revolution era, there has been a growing interest in deep learning using big data, and studies using deep learning have been actively conducted in various fields. In the transportation sector, there are many advantages to using deep learning in research as much as using deep traffic big data. In this study, a short -term travel speed prediction model using LSTM, a deep learning technique, was constructed to predict the travel speed. The LSTM model suitable for time series prediction was selected considering that the travel speed data, which is used for prediction, is time series data. In order to predict the travel speed more precisely, we constructed a model that reflects both temporal and spatial effects. The model is a short-term prediction model that predicts after one hour. For the analysis data, the 5minute travel speed collected from the Seoul Transportation Information Center was used, and the analysis section was selected as a part of Gangnam where traffic was congested.

Prediction of Highway Traffic Noise-calculation of Sound Attenuation during Propagation (고속도로 교통소음 예측-전달감쇠 산정)

  • 조대승;김진형;최태묵;오정한;김성훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.236-242
    • /
    • 2002
  • This paper presents some advanced and supplemental methods to enhance the accuracy In case of calculating geometric divergence attenuation, attenuation by multiple screening structures, ground attenuation at unflat surfaces of sound during propagation outdoors by the methods specified in ISO 9613-2. Moreover, a calculation method for considering short-term wind effect, specified in ASJ Model-1998, is also introduced. To verity the accuracy of adopted methods, we have carried out highway traffic noise prediction and measurement at tile twelve locations appearing representative road shapes and structures, such as flat, retained cut, elevated, barrier-constructed roads. From the results, we have confirmed the predicted results show good correspondence with the measured at direct, diffracted and reflected sound fields within 30 m from the center of near side lane.

Prediction of Divided Traffic Demands Based on Knowledge Discovery at Expressway Toll Plaza (지식발견 기반의 고속도로 영업소 분할 교통수요 예측)

  • Ahn, Byeong-Tak;Yoon, Byoung-Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.521-528
    • /
    • 2016
  • The tollbooths of a main motorway toll plaza are usually operated proactively responding to the variations of traffic demands of two-type vehicles, i.e. cars and the other (heavy) vehicles, respectively. In this vein, it is one of key elements to forecast accurate traffic volumes for the two vehicle types in advanced tollgate operation. Unfortunately, it is not easy for existing univariate short-term prediction techniques to simultaneously generate the two-vehicle-type traffic demands in literature. These practical and academic backgrounds make it one of attractive research topics in Intelligent Transportation System (ITS) forecasting area to forecast the future traffic volumes of the two-type vehicles at an acceptable level of accuracy. In order to address the shortcomings of univariate short-term prediction techniques, a Multiple In-and-Out (MIO) forecasting model to simultaneously generate the two-type traffic volumes is introduced in this article. The MIO model based on a non-parametric approach is devised under the on-line access conditions of large-scale historical data. In a feasible test with actual data, the proposed model outperformed Kalman filtering, one of a widely-used univariate models, in terms of prediction accuracy in spite of multivariate prediction scheme.

Development of Model for Optimal Concession Period in PPPs Considering Traffic Risk (교통량 위험을 고려한 도로 민간투자사업 적정 관리운영기간 산정 모형 개발)

  • KU, Sukmo;LEE, Seungjae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.421-436
    • /
    • 2016
  • Public-Private-Partnerships tend to be committed high project development cost and recover the cost through future revenue during the operation period. In general, long-term concession can bring on more revenue to private investors, but short-term concession less revenue due to the short recovering opportunities. The concession period is usually determined by government in advance or by the private sectors's proposal although it is a very crucial factor for the PPPs. Accurate traffic forecasting should be most important in planing and evaluating the operation period in that the forecasted traffic determines the project revenue with user fees in PPPs. In this regards, governments and the private investors are required to consider the traffic forecast risk when determining concession period. This study proposed a model for the optimal concession period in the PPPs transportation projects. Monte Carlo simulation was performed to find out the optimal concession period while traffic forecast uncertainty is considered as a project risk under the expected return of the private sector. The simulation results showed that the optimal concession periods are 17 years and 21 years at 5.5% and 7% discount level, respectively. This study result can be applied for the private investors and/or any other concerned decision makers for PPPs projects to set up a more resonable concession period.

Design of Highway Accident Detection and Alarm System Based on Internet of Things Guard Rail (IoT 가드레일 기반의 고속도로 사고감지 및 경보 시스템 설계)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1500-1505
    • /
    • 2019
  • Currently, as part of the ICT Smart City, the company is building C-ITS(Cooperative-Intelligent Transport Systems) for solving urban traffic problems. In order to realize autonomous driving service with C-ITS, the role of advanced road infrastructure is important. In addition to the study of mid- to long-term C-ITS and autonomous driving services, it is necessary to present more realistic solutions for road traffic safety in the short term. Therefore, in this paper, we propose a highway accident detection alarm system that can detect and analyze traffic flow and risk information, which are essential information of C-ITS, based on IoT guard rail and provide immediate alarm and remote control. Intelligent IoT guard rail is expected to be used as an intelligent advanced road infrastructure that provides data at actual road sites that are required by C-ITS and self-driving services in the long term.

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

A Study on the Prediction of Traffic Volume on Highway by the Reference Day of Archived Data (이력자료 참조일수에 따른 고속도로 교통량 예측에 관한 연구)

  • Lee, So-Yeon;Jung, So-Yeon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.230-237
    • /
    • 2018
  • Purpose: In Korea, traffic information is collected in real time as part of Intelligent Transportation System to enhance efficiency of road operation. However, traffic information based on real-time data is different from the traffic situation the driver will experience. Method: In this study, forecasts were made for future highway traffic by day and time period by adjusting the Archived data reference days to 3, 5 and 10 days based on existing traffic Archived data. Results: Fewer days of reference in the past showed smaller errors. The prediction of Monday based on five past histories showed greater errors than the 10 past histories, as the traffic flow on the sixth Monday of 2016 was somewhat different from the usual holiday. Conclution: This study shows that less of the reference days of the past history when estimating traffic volume, the more accurate the data of the traffic history of the event can be used on special days.