• Title/Summary/Keyword: Short-term Scheduling

Search Result 68, Processing Time 0.026 seconds

Optimal Operation Scheduling of Cogeneration Systems Using Fuzzy Linear Programming Method (퍼지선형계획법을 이용한 열병합발전시스템의 최적운전계획수립)

  • Lee, Jong-Beom;Jung, Chang-Ho;Lyu, Seung-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.516-518
    • /
    • 1995
  • This paper presents the optimal short-term operation scheduling by using fuzzy linear programming method on cogeneration systems connected with auxiliary equipments. Simulation is performed in case of the bottomming cycle. Modeling of cogeneration systems and auxiliary equipments is done, the effectiveness of modeling is evaluated through the detailed simulation. After the optimal operation scheduling is established by using linear programming method, the last optimal operation scheduling is established by using fuzzy linear programming method. The results of simulation show the auxiliary equipments can be effeciently operated in case of the bottomming cycle by modeling proposed in this paper.

  • PDF

Knowledge-based Approach for Solving Short-term Power Scheduling in Extended Power Systems (확장된 발전시스템에서 지식기반 해법을 이용한 단기운영계획 수립에 관한 연구)

  • 김철수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.187-200
    • /
    • 1998
  • This paper presents an original approach for solving short-term power scheduling in extended power system with two fuels in a unit and a limited fuel using Lagrangian relaxations. The underlying model incorporates the full set of costs and constraints including setup, production, ramping, and operational status, and takes the form of a mixed integer nonlinear control problem. Moreover, the mathematical model developed includes two fuels in a unit and a limited fuel, regulation reserve requirements of prespecified group of units. Lagrangian relaxation is used to disaggregate the model by generator into separate subproblems which are then solved with a nested dynamic program including empirical knowledges. The strength of the methodology lies partially in its ability to construct good feasible solutions from information provided by the dual. Thus, the need for branch-and-bound is eliminated. In addition, the inclusion of two fuels in a unit and a limited fuel provides new insight into the limitations of current techniques. Computational experience with the proposed algorithm indicates that Problems containing up to 23 units including 8 unit used two fuels and 24 time periods can be readily solved in reasonable times. Duality gaps of less than 4% were achieved.

  • PDF

Approach to Simulation of Long- and Short-Term Maintenance Planning in Floating Offshore Wind Farms (부유식 해상풍력단지의 장/단기 정비계획 시뮬레이션)

  • Nam-Kyoung Lee;Song-Kang An;Young-Jin Oh
    • Journal of Wind Energy
    • /
    • v.13 no.2
    • /
    • pp.5-12
    • /
    • 2022
  • Operations and maintenance (O&M) in offshore wind farms accounts for a substantial portion of the life cycle cost due to harsh weather conditions and vessel dispatching. In this regard, it is crucial to expedite O&M technologies in South Korea, which is in the early stage of harnessing wind resources from the ocean. This contribution investigates an O&M planning and scheduling model for floating offshore wind farms with a literature review and use case study. We introduce the development of a long- and short-term maintenance planning framework as part of an integrated O&M platform. This contains a single vessel and fleets routing composition along with technicians and a maintenance job list based on numerical algorithms. Additionally, the routing search presents the basis of decision support for economic trade-offs regarding smooth operation corresponding to ever-changing wind farm situations. The maintenance planning simulator will ultimately contribute to support yearly and day-to-day power-related decisions in a cost-effective manner.

Mixed-Integer programming model for scheduling of steelmaking processes (철강 공정의 일정계획을 위한 혼합정수계획 모델)

  • Bok, Jin-Gwang;Lee, Dong-Yeop;Park, Seon-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.714-723
    • /
    • 1999
  • This paper presents a short-term scheduling algorithm for the operation of steelmaking processes. The scope of the problem covers refining of the hot iron transferred form a blast furnace, ladle treatment, continuous casting, hot-rolling, and coiling for the final products that should satisfy the given demand. The processing time at each unit depends on how much the batch amount is treated, and te dedicated intermediate storage with finite capacity between the units is considered. Resource constraints and initial amount of each state are incorporated into the presented scheduling model for the algorithm of on-line scheduling. We propose amixed integer linear programming (MILP) model with two objectives for the scheduling. The first is to maximize the total profit while atisfying the due date constraint for each product. And the second is to minimize the total processing time, makespan, while satisfying the demand for each product. Especially, we observe the effect of penalizing the intermediate storage and the inventory level of the final product on the scheduling results.

  • PDF

Short-Term Prediction Model of Postal Parcel Traffic based on Self-Similarity (자기 유사성 기반 소포우편 단기 물동량 예측모형 연구)

  • Kim, Eunhye;Jung, Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.76-83
    • /
    • 2020
  • Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.

Risk-based Operational Planning and Scheduling Model for an Emergency Medical Center (응급의료센터를 위한 위험기반 운영계획 모델)

  • Lee, Mi Lim;Lee, Jinpyo;Park, Minjae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.9-17
    • /
    • 2019
  • In order to deal with high uncertainty and variability in emergency medical centers, many researchers have developed various models for their operational planning and scheduling. However, most of the models just provide static plans without any risk measures as their results, and thus the users often lose the opportunity to analyze how much risk the patients have, whether the plan is still implementable or how the plan should be changed when an unexpected event happens. In this study, we construct a simulation model combined with a risk-based planning and scheduling module designed by Simio LLC. In addition to static schedules, it provides possibility of treatment delay for each patient as a risk measure, and updates the schedule to avoid the risk when it is needed. By using the simulation model, the users can experiment various scenarios in operations quickly, and also can make a decision not based on their past experience or intuition but based on scientific estimation of risks even in urgent situations. An example of such an operational decision making process is demonstrated for a real mid-size emergency medical center located in Seoul, Republic of Korea. The model is designed for temporal short-term planning especially, but it can be expanded for long-term planning also with some appropriate adjustments.

A Novel Second Order Radial Basis Function Neural Network Technique for Enhanced Load Forecasting of Photovoltaic Power Systems

  • Farhat, Arwa Ben;Chandel, Shyam.Singh;Woo, Wai Lok;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • In this study, a novel improved second order Radial Basis Function Neural Network based method with excellent scheduling capabilities is used for the dynamic prediction of short and long-term energy required applications. The effectiveness and the reliability of the algorithm are evaluated using training operations with New England-ISO database. The dynamic prediction algorithm is implemented in Matlab and the computation of mean absolute error and mean absolute percent error, and training time for the forecasted load, are determined. The results show the impact of temperature and other input parameters on the accuracy of solar Photovoltaic load forecasting. The mean absolute percent error is found to be between 1% to 3% and the training time is evaluated from 3s to 10s. The results are also compared with the previous studies, which show that this new method predicts short and long-term load better than sigmoidal neural network and bagged regression trees. The forecasted energy is found to be the nearest to the correct values as given by England ISO database, which shows that the method can be used reliably for short and long-term load forecasting of any electrical system.

Energy Optimized Transmission Strategy in CDMA Reverse Link: Graph Theoretic Approach (역방향 CDMA 시스템에서 에너지 최적화된 전송기법: 그래프 이론적 접근)

  • Oh, Changyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.3-9
    • /
    • 2015
  • We investigate rate scheduling and power allocation problem for a delay constrained CDMA systems. Specifically, we determine an energy efficient scheduling policy, while each user maintains the short term (n time slots) average throughput. We consider a multirate CDMA system where multirate is achieved by multiple codes. Each code can be interpreted as a virtual user. The aim is to schedule the virtual users into each time slot, such that the sum of transmit energy in n time slots is minimized. We then show that the total energy minimization problem can be solved by a shortest path algorithm. We compare the performance of the optimum scheduling with that of TDMA-type scheduling.

Large Step Optimization Approach to Flexible Job Shop Scheduling with Multi-level Product Structures (다단계 제품 구조를 고려한 유연 잡샵 일정계획의 Large Step Optimization 적용 연구)

  • Jang, Yang-Ja;Kim, Kidong;Park, Jinwoo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.429-434
    • /
    • 2002
  • For companies assembling end products from sub assemblies or components, MRP (Material Requirement Planning) logic is frequently used to synchronize and pace the production activities for the required parts. However, in MRP, the planning of operational-level activities is left to short term scheduling. So, we need a good scheduling algorithm to generate feasible schedules taking into account shop floor characteristics and multi-level job structures used in MRP. In this paper, we present a GA (Genetic Algorithm) solution for this complex scheduling problem based on a new gene to reflect the machine assignment, operation sequences and the levels of the operations relative to final operation. The relative operation level is the control parameter that paces the completion timing of the components belonging to the same branch in the multi-level job hierarchy. In order to revise the fixed relative level which solutions are confined to, we apply large step transition in the first step and GA in the second step. We compare the genetic algorithm and 2-phase optimization with several dispatching rules in terms of tardiness for about forty modified standard job-shop problem instances.

  • PDF

OPTIMAL SHORT-TERM UNIT COMMITMENT FOR HYDROPOWER SYSTEMS USING DYNAMIC PROGRAMMING

  • Yi, Jae-eung
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.279-291
    • /
    • 2000
  • A mathematical model using dynamic programming approach is applied to an optimal unit commitment problem. In this study, the units are treated as stages instead of as state dimension, and the time dimension corresponds to the state dimension instead of stages. A considerable amount of computer time is saved as compared to the normal approach if there are many units in the basin. A case study on the Lower Colorado River Basin System is presented to demonstrate the capabilities of the optimal scheduling of hydropower units.

  • PDF