• Title/Summary/Keyword: Short-circuit ratio characteristic

Search Result 11, Processing Time 0.027 seconds

A New Definition of Short-circuit Ratio for Multi-converter HVDC Systems

  • Liu, Dengfeng;Shi, Dongyuan;Li, Yinhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1958-1968
    • /
    • 2015
  • In this paper, a new definition of short-circuit ratio concept for multi-converter HVDC systems is proposed. Analysis results of voltage interaction between converters show that the reactive power-voltage characteristic of a converter has a dominant effect on voltage interaction level compared with its active power-voltage characteristic. Such a relation between converter reactive power and voltage interaction level supports taking the former into account in the definition of short-circuit ratio concept for multi-converter systems. The proposed definition is verified by the method of maximum power curve for various system configurations. Furthermore, a formula to calculate transient overvoltage for multi-converter systems is derived based on the proposed definition, and the efficiency of the derived formula is verified.

Operation and Generation Characteristic of 100MW-Class Wound Rotor Synchronous Generator According to Number of Slots (슬롯 수에 따른 100MW급 권선형 동기발전기 발전특성 및 운전특성 비교)

  • Kim, Chang-Woo;Park, Yo-Han;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.4
    • /
    • pp.523-531
    • /
    • 2019
  • This paper deals with a wound-field synchronous machines(WFSM), with an electromagnet on its salient rotor, as an alternative to a permanent magnet in the rotor. We then examine the power performance characteristics, loss characteristics, V-curves and large short-circuit ratios for a large-scale synchronous generator, considering the leading and lagging operations, based on the finite-element method. We predict the performance of a 100MVA-class generator based on the operating range for a constant short-circuit ratio. At the last, We compared with the electromagnetic characteristics of three model according to number of slots.

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.

Characteristic Analysis of a Flux-Lock Type SFCL Considering Magnetization Characteristic of Iron Core (철심의 자화특성을 고려한 자속구속형 초전도 사고전류제한기의 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.995-999
    • /
    • 2007
  • We investigated the characteristics of a flux-lock type superconducting fault current limiter(SFCL) considering magnetization characteristic of iron core. The flux-lock type SFCL, like other types of SFCLs using the iron core, undergoes the saturation of the iron core during the initial fault time. Therefore, if the design to prevent the saturation of the iron core is considered, the effective fault current limiting operation can be achieved. Through the analysis for its equivalent circuit including the magnetization characteristic of the iron core, the limiting impedance of the flux-lock type SFCL was drawn. The magnetization currents and the limited currents of SFCL, which were dependent on the winding direction and the turns' ratio between two coils, were investigated from the short circuit experiment. It was confirmed that their experimental results agreed with the analysis ones.

Analysis for the conventional impedance of counterpoise using EMTP (EMTP를 이용한 매설지선의 규약접지임피던스 해석)

  • Kim, Jong-Ho;Joe, Jeong-Hyeon;Beak, Young-Hwan;Lee, Gang-Su;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.47-50
    • /
    • 2009
  • When the lightning currents flow through the ground electrode, the grounding system should be evaluated by the grounding impedance rather than the ground resistance because a grounding system shows the transient impedance characteristic by the inductance of the ground electrode and the capacitance of the soil. The ratio of the peak values of electric potential and currents is the conventional impedance that shows the transient characteristic about impulse currents of the grounding system in a roundabout way. The grounding system having low conventional impedance is a fine grounding system with low electric potential when the lightning currents flow. In this paper the conventional impedance of the counterpoise is calculated by using the distributed parameter circuit model and embodied the distributed parameter circuit model by using the EMTP program The adequacy of the distributed parameter model is examined by comparing the simulated and the measured results. The conventional impedance of the counterpoise is analyzed for first short stroke and subsequent short stroke currents.

  • PDF

Comparative Study between Two and Single-loop Control of Boost Converter for PVPCS (태양광용 부스트 컨버터의 2중 루프 제어 및 단일 루프 제어의 특성 비교)

  • Kim, Dong-Whan;Im, Ji-Hoon;Song, Seung-Ho;Choi, Ju-Yeop;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.153-159
    • /
    • 2012
  • In photovoltaic system, the characteristic of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, a boost converter of the PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristic of the boost converter by comparing single-loop control algorithm and two-loop control algorithm using both analog and digital control. The proposed both compensation method has been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control schemes.

  • PDF

Electrical Leakage Levels Estimated from Luminescence and Photovoltaic Properties under Photoexcitation for GaN-based Light-emitting Diodes

  • Kim, Jongseok;Kim, HyungTae;Kim, Seungtaek;Choi, Won-Jin;Jung, Hyundon
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.516-521
    • /
    • 2019
  • The electrical leakage levels of GaN-based light-emitting diodes (LEDs) containing leakage paths are estimated using photoluminescence (PL) and photovoltaic properties under photoexcitation conditions. The PL intensity and open-circuit voltage (VOC) decrease because of carrier leakages depending on photoexcitation conditions when compared with reference values for typical LED chips without leakage paths. Changes of photovoltage-photocurrent characteristics and PL intensity due to carrier leakage are employed to assess the leakage current levels of LEDs with leakage paths. The current corresponding to the reduced VOC of an LED with leakage from the photovoltaic curve of a reference LED without leakage is matched with the leakage current calculated using the PL intensity reduction ratio and short-circuit current of the LED with leakage. The current needed to increase the voltage for an LED with a leakage under photoexcitation from VOC of the LED up to VOC of a reference LED without a leakage is identical to the additional current needed for optical turn-on of the LED with a leakage. The leakage current level estimated using the PL and photovoltaic properties under photoexcitation is consistent with the leakage level measured from the voltage-current characteristic obtained under current injection conditions.

Characteristic Analysis of Disk Type Single-phase Switched Reluctance Motor with Pole Shoe in Stator (회전자에 돌출구조를 가지는 디스크형 단상 스위치드 릴럭턴스 전동기의 특성 해석)

  • Lee, Min-Myung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.612-615
    • /
    • 2002
  • The main advantages of Disk type Single-Phase Switched Reluctance Motor (DSPSRM) is the simple construction, rugged structure, low manufacturing cost and simple driving circuit. It is especially possible to make the short axial length of DSPSRM. Therefore, it is suitable to setup this motor in a narrow space. This paper presents the shape design to maximize the average torque of DSPSRM that is achieved by 3D Finite Element Method (3D FEM) considering the nonlinear of magnetic material. The characteristics of two different rotor shapes are compared. The design parameters, such as the rotor and stator pole arc, are selected to the parametric study. The effect of pole arc ratios on the torque performance is investigated. From these results, the optimal pole arc to produce the maximum torque is determined.

Diagnosis Method and Characteristic Analysis of Shorted Turns on Generator Rotor using Flux Sensorless (자속센서리스 회전자 층간단락 진단기법 및 특성해석)

  • Kim Sun-Ja;Jeon Ywun-Seok;Lee Seung-Hak;Jeong Byung-Hwan;Lee Myung-Un;Choe Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.257-263
    • /
    • 2005
  • Short-circuit rotor windings on a generator causes unstable oscillation of unbalance of flux, asymmetrical heat. In order to prevent serious accidents of short-circuit rotor windings, it is important to study the shorted-turn diagnosis method for rotor windings of the generator. To improve the defects of the diagnosis with sensors, the new sensorless method for rotor shorted-turn diagnosis is proposed, which is to measure the electrical values of the voltage and current at the generator and then to detect if the shorted-turned phenomena would occurred. For the feasibility of the suggested method the theoretical results are shown in the aspects of the air-gap flux density, the flux leakage, the generated output voltage and the shorted field current through the digital simulation. Also the possibility of decision for the suggested sensorless method could be shown in this paper.

Analysis of Fault Current Limiting Characteristics According to Variation of Fault Current level in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (사고전류 변화에 따른 일체화된 삼상자속구속형 고온초전도 사고전류제한기의 사고전류 제한 특성 분석)

  • Han, Byoung-Sung;Park, Chung-Ryul;Du, Ho-Ik;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.39-40
    • /
    • 2007
  • The analysis of fault current limiting characteristics according to variation of fault current level in the integrated three-phase flux-lock type superconducting fault current limiter (SFCL), which consisted of three-phase flux-lock reactor wound on an iron core with the same turn's ratio between coil 1 and coil 2 for each single phase, was performed. To analyze the current limiting characteristics of this integrated three-phase flux-lock type SFCL, the short circuit experiments was carried out the various three-phase faults such as the single line-to-ground fault, the double line-to-ground fault, the triple line-to-ground fault. From the experimental results, the fault current limiting characteristic was improved according to increase of fault current level.

  • PDF