• Title/Summary/Keyword: Short-chain acyl-CoA dehydrogenase deficiency

Search Result 10, Processing Time 0.045 seconds

A Case of asymptomatic Short-chain Acyl-CoA Dehydrogenase Deficiency (무증상의 경쇄 acyl-CoA 탈수소효소 결핍증 1례)

  • Lee, Hwapyung;Kim, Jinsup;Huh, Rimm;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.98-100
    • /
    • 2015
  • Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a rare mitochondrial fatty-acid oxidation disorder that is inherited as an autosomal recessive pattern. SCAD deficiency is caused by mutations in the ACADS gene (Acyl-CoA Dehydrogenase, Short-chain, OMIM #606885), which encodes SCAD, the mitochondrial enzyme that catalyzes the first reaction in the beta-oxidation of fatty acids four to six carbons in length. Here, we describe one Korean pediatric case of SCAD deficiency, which was diagnosed during newborn screening through tandem mass spectrometry. An increased concentration of butyrylcarnitine was detected on the newborn screening test, and the urine organic acid analysis showed increased urinary excretion of ethylmalonic acid. The patient has been asymptomatic and has shown normal growth and development by 8 months of age without any intervention during follow-up period.

Short-chain Acyl-CoA Dehydrogenase Deficiency in an Asymptomatic Neonate (무증상 신생아에서 진단된 경쇄 acyl-CoA 탈수소효소 결핍증 1례)

  • Lee, Yeonhee;Kim, Jinsup;Huh, Rimm;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.93-97
    • /
    • 2015
  • Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an autosomal recessive hereditary metabolic disorder of mitochondrial fatty acid beta-oxidation. Mutations in the ACADS gene cause short-chain acyl-CoA dehydrogenase deficiency, which is characterized by developmental delay, hypotonia, seizure, and hypoglycemia. Here, we describe one Korean pediatric case of SCAD deficiency, which was diagnosed during newborn screening by tandem mass spectrometry and confirmed by molecular analysis. The level of C4 was typically elevated 5.23 mg/dL (reference range <1.5 mg/dL). This patient had a homozygous mutation [c.1031A>G, p. E344G] in ACADS. Therefore, we present a case of SCAD deficiency in an otherwise healthy neonate and her subsequent development and growth over four years.

Identification of Novel Compound Heterozygous Mutations in the ACADS Gene of an Asymptomatic Korean Newborn with Short Chain Acyl-CoA Dehydrogenase Deficiency by Tandem Mass Spectrometry

  • Cheon, Chong-Kun;Choi, Hyung-Soon;Kim, Su-Yung;Yoo, Han-Wook;Kim, Gu-Hwan
    • Journal of Genetic Medicine
    • /
    • v.9 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • Short-chain acyl-CoA dehydrogenase deficiency (SCADD; OMIM # 201470) is an autosomal recessive inborn error of mitochondrial fatty acid ${\beta}$-oxidation, presenting with a variety of clinical signs and symptoms. Developmental delay, hypertonia or hypotonia, ketotic hypoglycemia, and epilepsy are most frequently reported. In general, patients diagnosed through newborn screening have shown normal growth and development in contrast to those diagnosed as a result of clinically initiated evaluations. Here, the case of an asymptomatic Korean newborn with SCADD identified by tandem mass spectrometry is reported. The patient showed an elevated concentration of butyrylcarnitine detected on newborn screening. Urinary excretion of ethylmalonic acid was elevated by urine organic acid analysis. To confirm the diagnosis of SCADD, a direct sequencing analysis of 10 coding exons and the exon-intron boundaries of the ACADS gene were performed. Genetic analysis of ACADS showed the following novel compound heterozygous missense mutations: c.277C>A (p.Leu93Ile) on exon3 and c.682G>A (p.Glu288Lys) on exon6. These results will provide further evidence of mutational heterogeneity for SCADD.

Compound heterozygous mutations of ACADS gene in newborn with short chain acyl-CoA dehydrogenase deficiency: case report and literatures review

  • An, Se Jin;Kim, Sook Za;Kim, Gu Hwan;Yoo, Han Wook;Lim, Han Hyuk
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.45-48
    • /
    • 2016
  • Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive mitochondrial disorder of fatty acid ${\beta}$-oxidation, and is associated with mutations in the acyl-CoA dehydrogenase (ACADS) gene. Recent advances in spectrometric screening for inborn errors of metabolism have helped detect several metabolic disorders, including SCADD, without symptoms in the neonate period. This allows immediate initiation of treatment and monitoring, so they remain largely symptomless metabolic disease. Here, we report a 15-month-old asymptomatic male, who was diagnosed with SCADD by newborn screening. Spectrometric screening for inborn errors of metabolism 72 hours after birth revealed an elevated butyrylcarnitine (C4) concentration of $2.25{\mu}mol/L$ (normal, < $0.99{\mu}mol/L$). Urinary excretion of ethylmalonic acid was also elevated, as detected by urine organic acid analysis. To confirm the diagnosis of SCADD, direct sequencing analysis of 10 coding exons and the exon-intron boundaries of the ACADS gene were performed. Subsequent sequence analysis revealed compound heterozygous missense mutations c.164C>T (p.Pro55Leu) and c.1031A>G (p.Glu344Gly) on exons 2 and 9, respectively. The patient is now growing up, unretarded by symptoms such as seizure and developmental delay.

A Case of Short-chain Acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening

  • Park, Kyungwon;Ko, Jung Min;Jung, Goun;Lee, Hee Chul;Yoon, So Young;Ko, Sun Young;Lee, Yeon Kyung;Shin, Son Moon;Park, Sung Won
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.1
    • /
    • pp.40-43
    • /
    • 2015
  • Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an autosomal recessive mitochondrial disorder of fatty acid oxidation associated with mutations in the ACADS gene. While patients diagnosed clinically have a variable clinical presentation, patients diagnosed by newborn screening are largely asymptomatic. We describe here the case of a 1-year-old male patient who was detected by newborn screening and diagnosed as SCAD deficiency. Spectrometric screening for inborn errors of metabolism at 72hrs after birth showed elevated butyrylcarnitine (C4) level of 1.69 mol/L (normal, <0.83 mol/L), C4/C2 ration of 0.26 (normal, <0.09), C5DC+C60H level of 39 mol/L (normal, <0.28 mol/L), and C5DC/C8 ration of 7.36 (normal, <4.45). The follow-up testing at 18 days of age were performed: liquid chromatography tandem mass spectrometry (LC-MS/MS), urine organic acids, and quantitative acylcarnitine profile. C4 carnitine was elevated as 0.91; urine organic acid analysis showed elevated ethylmalonic acid as 62.87 nmol/molCr (normal, <6.5), methylsuccinate 6.81 nmol/molCr (normal, not detected). Sequence analysis of ACADS revealed a homozygous missense mutation, c.164C>T (p.Pro55Leu). He is growing well and no episodes of seizures or growth retardation had occurred.

A cost-benefit analysis on tandem mass spectrometry of inherited metabolic diseases in Korea (한국에서의 유전성 대사 질환에 대한 탄뎀 매스 검사의 경제성 분석)

  • Ryu, Hyoung-Ock;Lee, Dong-Hwan;Choi, Tae-Youn;Yoon, Hye-Ran
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.53-63
    • /
    • 2007
  • Purpose : Tandem mass spectrometry (MS/MS) is effective screening test for inherited metabolic diseases. In this study, we estimate potential costs and benefits of using tandem mass spectrometry (MS/MS) to screen new borns for inherited metabolic diseases (phenylketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency) in Korea. Methods : From April 2001 to March 2004, 79,179 new borns were screened for amino acid disorders, organic acid disorders, and fatty acid oxidative disorders. Twenty-eight new borns were diagnosed with one of the metabolic disorder and the collective estimated prevalence amounted to 1 in 2,800 with a sensitivity of 97.67%, a specificity of 99.28%, a recall rate of 0.05%, and a positive preditive value of 6.38%. We calculated and compared the total costs in case when neonatal screening on pheny lketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency is implemented, and when not. Results : If the neonatal screening on pheny lketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency is implemented, total benefits far exceed costs at a ratio of 1.40:1. Conclusion : Although, this study only concerns the monetary aspects of the neonatal screening, tandem mass spcetrometry for neonatal screening is cost-effective compared with not screening. The study appears to support the introduction of tandem mass spectrometry into a Korea neonatal screening programme for inherited metabolic diseases.

  • PDF

The Strategy for Diagnosis and Treatment of Isovaleric Acidemia (아이소발레릭산혈증의 신생아선별검사 후 진단 및 치료 전략)

  • Ko, Jung Min;Lee, Kyung-A
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.57-61
    • /
    • 2016
  • Isovaleric acidemia (IVA) is an autosomal recessively inherited organic acid disorder due to a defect of the enzyme isovaleryl-CoA dehydrogenase in the leucine metabolic pathway. Deficiency of this enzyme results in the accumulation of derivatives of isovaleryl-CoA. In acute illness in IVA, isovaleric acid and its derivatives accumulate and profound metabolic acidosis with ketosis, characteristic pungent body odor, hypoglycemia, and hyperammonemia can be developed. Additionally, recurrent vomiting, failure to thrive, developmental delay, epilepsy and mental retardation are chronic presenting symptoms and signs for IVA. On the result of newborn screening for inherited metabolic disorders, increased levels of isovalerylcarnitine (C5) are shown. However, C5 elevation can be accompanied with short/branched-chain acyl-CoA dehydrogenase (SBCAD) and therapy with certain antibiotics containing pivalic acid. Quantitative measurement of organic acids in urine and acylcarnitine profiles in plasma are necessary to differential diagnosis. Molecular genetic analysis of the IVD gene for IVA and ACADSB is also helpful to confirm IVA and SBCAD deficiency, respectively. Considering that IVA can be associated with significant morbidity and mortality at acute presentation of metabolic crisis, early diagnosis prior to the onset of symptoms by newborn screening enable to introduction of early treatment and prevention of acute and chronic complications.

  • PDF

Identification of single nucleotide polymorphisms in the ACADS gene and their relationships with economic traits in Hanwoo (한우의 ACADS 유전자내의 SNP 탐색 및 경제형질과의 연관성 분석)

  • Oh, Jae-Don;Cheong, Il-Cheong;Sohn, Young-Gon;Kong, Hong-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.219-226
    • /
    • 2012
  • The acyl-CoA dehydrogenase, C-2 to C-3 short chain (ACADS) gene is known to be related with fat metabolism, especially coverts the fat to the energy sources in cattle. In human, the mutations in this gene cause SCAD deficiency, which is one of the fatty acid metabolism disorders. The ACADS gene is located on bovine chromosome 17. The objective of this study was to identify SNPs in Hanwoo ACADS gene and identify the relationships with economic traits. In this study, two SNPs, T1570G SNP in exon 2 and G13917A SNP in exon 4, were observed. Moreover, in the coding region, 2 missense mutations, T (Cys) ${\rightarrow}$ G (Trp) mutation at 1570 bp and G (Arg) ${\rightarrow}$ A (Gln) mutation at 13917 bp, were observed. These mutations were subjected to the PCR-RFLP for typing 198 Hanwoo animals. The observed genotype frequency for T1570G was 0.135 (TT), 0.860 (TG) and 0.005 (GG), respectively. Also, 0.900 (GG) and 0.100 (GA) were observed for the G13917A mutation. The association of these SNPs with four economic traits, CW (Carcass Weight), BF (Backfat Thickness), LMA (Longissimus Muscle Area), MS (Marbling Score), were also observed. The results indicated that no significant results were observed in all four traits (P>0.05). This might indicate that further studies are ultimately needed to use the SNPs in ACADS gene in lager populations for effectively used for the marker assisted selection.

Investigation of False Positive Rates Newborn Screening using Tandem Mass Spectrometry (TMS) Technology in Single Center (단일기관에서 이중 질량 분석법(tandem mass spectrometry technology)을 이용한 선천성 대사이상 검사의 위양성율에 대한 연구)

  • Kim, Hyunsoo;Shin, Son Moon;Ko, Sun Young;Lee, Yeon Kyung;Park, Sung Won
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • Objective: Newborn screening leads to improved treatment and disease outcomes, but false-positive newborn screening results may impact include parental stress and anxiety, perception of child as unhealthy, parent-child relationship dysfunction, and increased infant hospitalizations. The purpose of this study was to investigate of the false positive rates and the causative factors of false positive results in Tandem Mass Spectrometry (TMS) in single center. Methods: Records were reviewed for all 18,872 subjects who were born in Cheill General Hospital, during January 1st, 2012 to December 31st, 2014. 17,292 neonates (91.62%) were tested for tandem mass screening almost in 2-5th day of life. Newborn babies whose first results were abnormal had been tested repeatedly by same methods in 7-14 day. If the results were abnormal again, further evaluation was performed. TMS analysis included data for the 43 disorders screened for using TMS broken down into three categories: fatty acid oxidation disorders, organic acidurias, and aminoacidopathies. The impact of several factors on increased false positive rates was analyzed using a multivariate analysis: time from birth to sample collection, birth weight, birth height, BMI, gender, gestational age, delivery type. Results: Males of the subjects were 8942 (51.7%), female 8350 (48.3%), the mean gestational age was $38.6{\pm}1.7$ weeks, the average birth weight $3,155.6{\pm}502.4g$, the average birth height $49.1{\pm}2.9cm$, and the average BMI $13.0{\pm}3.8(kg/m^2)$. Vaginal delivery cases were 9713 (56.2%), caesarean section 7,579 (43.8%). The average date of the inspection was $2.8{\pm}1.1$ days. 224 cases were identified as TMS positive. All the subjects were false positive (222/17,292, 1.30%) except 2 cases (1 male; benign phenylketonuria and 1 female; Short chain acyl-CoA dehydrogenase deficiency). The false positive rates were 0.61% in fatty acid oxidation disorders, 0.25% in organic acidurias, and 0.45% in aminoacidopathies. In our study, the date of inspection got late, the false positive rates got higher. Because almost the cases of late test date were in treatment in neonatal intensive care unit so their test date was affected by their medical conditions. False positive rate was higher in extreme immaturity${\leq}27$ weeks than newborns of gestational age >27 weeks [OR=6.957 (CI=1.273-38.008), p<0.025] and extremely low birth weight<1,000 g than newborns of birthweight ${\geq}1,000g$ [OR=5.616 (CI=1.134-27.820), p<0.035]. Conclusion: False positive rate of TMS was 1.30% in Cheil General Hospital. Lower gestational age and birth weight impacted on increased false positive rates. Better understanding of factors that influence the reporting of screening tests, and the ability to modify these important factors, may improve the screening process and reduce the need for retesting. of screening tests, and the ability to modify these important factors, may improve the screening process and reduce the need for retesting.

  • PDF