• Title/Summary/Keyword: Short-Term Prediction

Search Result 629, Processing Time 0.03 seconds

Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches (시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지)

  • Jung, Sihun;Kim, Young Jun;Park, Sumin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1077-1093
    • /
    • 2020
  • Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.

New Considerations on Variability of Creep Rupture Data and Life Prediction (크리프 파단 데이터의 변동성에 대한 새로운 고찰과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1119-1124
    • /
    • 2009
  • This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and $700^{\circ}C$ elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

Development of Surface Weather Forecast Model by using LSTM Machine Learning Method (기계학습의 LSTM을 적용한 지상 기상변수 예측모델 개발)

  • Hong, Sungjae;Kim, Jae Hwan;Choi, Dae Sung;Baek, Kanghyun
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • Numerical weather prediction (NWP) models play an essential role in predicting weather factors, but using them is challenging due to various factors. To overcome the difficulties of NWP models, deep learning models have been deployed in weather forecasting by several recent studies. This study adapts long short-term memory (LSTM), which demonstrates remarkable performance in time-series prediction. The combination of LSTM model input of meteorological features and activation functions have a significant impact on the performance therefore, the results from 5 combinations of input features and 4 activation functions are analyzed in 9 Automated Surface Observing System (ASOS) stations corresponding to cities/islands/mountains. The optimized LSTM model produces better performance within eight forecast hours than Local Data Assimilation and Prediction System (LDAPS) operated by Korean meteorological administration. Therefore, this study illustrates that this LSTM model can be usefully applied to very short-term weather forecasting, and further studies about CNN-LSTM model with 2-D spatial convolution neural network (CNN) coupled in LSTM are required for improvement.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.

Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM (LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석)

  • Ju-Hyung Lee;Jun-Ki Hong
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 2022
  • Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Therefore, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'A'. According to the simulation results, it was confirmed that Bidirectional-LSTM(Bi-LSTM) compared to LSTM(Long Short-Term Memory) takes more simulation time about more than 50%, but the prediction accuracy of non-periodic time series data such as clothing product sales data is the same.

Estimation of Basic Wind Speed at Bridge Construction Site Based on Short-term Measurements (단기 풍관측에 의한 교량현장 기본풍속 추정)

  • Lee, Seong-Lo;Kim, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1271-1279
    • /
    • 2013
  • In this paper, a study on the prediction method of basic wind speed at the construction site of long-span bridge using short-term measurements was conducted. To determine the basic wind speed in the wind resistant design for the long-span bridge away from the weather station, statistical analysis of long-term data at site is required. Wind observation mast was installed at site, and short-term measurements were gathered and the correlation analysis between the site and the station was done using regression analysis and MCP(Measure-Correlate-Predict). The long-term wind data of the site was obtained from correlation formula after topographical revision of long-term data of the station. And basic wind speed could be estimated by extreme probability distribution analysis. The research results show that the wind speed by regression analysis is predicted lower than by MCP and after this study a series of correlation analyses at several sites will show clearly the difference two methods. And also a quality control of long-term wind data is very important in estimation of wind speed.

Using Traffic Prediction Models for Providing Predictive Traveler Information : Reviews & Prospects (교통정보 제공을 위한 교통예측모형의 활용)

  • Ran, Bin;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.141-157
    • /
    • 1999
  • This paper first reviews current practices of traveler information providing and provides some perspectives regarding the possible near term milestones in traveler information providing. Then, reviews of four types of prediction models: 1) dynamic traffic assignment (DTA) model; 2) statistical model; 3) simulation model; and 4) heuristic model are described in the sense that various prediction models are needed to support providing predictive traveler information in the near future. Next, the functional requirements and capabilities of the four types of prediction models are discussed and summarized along with some advantages and disadvantages of these models with reference to short-term travel time prediction. Furthermore, a comprehensive prediction procedure, which combines the four types of prediction models, is presented, together with the data requirements for each type of prediction model.

  • PDF

A Study of Improvement of a Prediction Accuracy about Wind Resources based on Training Period of Bayesian Kalman Filter Technique (베이지안 칼만 필터 기법의 훈련 기간에 따른 풍력 자원 예측 정확도 향상성 연구)

  • Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.11-23
    • /
    • 2017
  • The short term predictability of wind resources is an important factor in evaluating the economic feasibility of a wind power plant. As a method of improving the predictability, a Bayesian Kalman filter is applied as the model data postprocessing. At this time, a statistical training period is needed to evaluate the correlation between estimated model and observation data for several Kalman training periods. This study was quantitatively analyzes for the prediction characteristics according to different training periods. The prediction of the temperature and wind speed with 3-day short term Bayesian Kalman training at Taebaek area is more reasonable than that in applying the other training periods. In contrast, it may produce a good prediction result in Ieodo when applying the training period for more than six days. The prediction performance of a Bayesian Kalman filter is clearly improved in the case in which the Weather Research Forecast (WRF) model prediction performance is poor. On the other hand, the performance improvement of the WRF prediction is weak at the accurate point.

ELM based short-term Water Demand Prediction for Effective Operation of Water Treatment Plant (정수장 운영효율 향상을 위한 ELM 기반 단기 물 수요 예측)

  • Choi, Gee-Seon;Lee, Dong-Hoon;Kim, Sung-Hwan;Lee, Kyung-Woo;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.108-116
    • /
    • 2009
  • In this paper, we develop an ELM(Extreme Learning Machine) based short-tenn water demand prediction algorithm which solves overfitting problem of MLP(Multi Layer Perceptron) and has quick training time. To show effectiveness of proposed method, we analyzed time series data collected in A water treatment plant at Chung-Nam province during $2007{\sim}2008$ years and used the selected data for the verification of developed algorithm. According to the experimental results, MLP model showed 5.82[%], but the proposed ELM based model showed 5.61[%] with respect to MAPE, respectively. Also, MLP model needed 7.57s training time, but ELM based model was 0.09s. Therefore, the proposed ELM based short-term water demand prediction model can be used to operate the water treatment plant effectively.