• Title/Summary/Keyword: Short circuit ratio

Search Result 112, Processing Time 0.018 seconds

Compact Half Bow-tie-type Quasi-Yagi Antenna for Terrestrial DTV Reception (지상파 디지털 방송 수신용 소형 반 보우 타이 형 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1908-1914
    • /
    • 2013
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The coplanar strip line which feeds the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type rectangular director at a location close to the driver dipole, broadband impedance matching and gain enhancement in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bow-tie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as a design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a good performance such as a frequency band of 450-848 MHz for a VSWR < 2, gain > 4.1 dBi, and front-to-back ratio > 10.4 dB.

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline (2,3-Dimethyl-5,8-dithiophen-2-yl-quinoxaline을 기본 골격으로 한 새로운 고분자 물질의 합성 및 광전변환특성)

  • Shin, Woong;Park, Jeong Bae;Park, Sang Jun;Jo, Mi Young;Suh, Hongsuk;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-9,9-dihexyl-9H-fluorene] (PFTQT) and poly[2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline-alt-10-hexyl-10H-phenothiazine (PPTTQT) based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline weresynthesized by Suzuki coupling reaction. All polymers were soluble in common organic solvents such as chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran (THF) and toluene. The maximum absorption wavelength and band gap of PFTQT were 440 nm and 2.30 eV, and PPTTQT were 445 nm and 2.23 eV, respectively. The HOMO and LUMO energy level of PFTQT were -6.05 and -3.75 eV, and PPTTQT were -5,89 and -3.66 eV, respectively. The organic photovoltaic devices based on the blend of polymer and PCBM (1 : 2 by weight ratio) were fabricated. Efficiencies of devices were 0.24% (PFTQT) and 0.16% (PPTTQT), respectively. The short circuit current density ($J_{sc}$), fill factor (FF), and open circuit voltage ($V_{oc}$) of the device with PFTQT were $0.97mA/cm^2$, 29% and 0.86 V, and the device based on PPTTQT were $0.80mA/cm^2$, 28% and 0.71 V, 31% and 0.71 V, respectively, under air mass (AM) 1.5 G and 1 sun condition ($100mA/cm^2$).