• 제목/요약/키워드: Short Fiber Reinforced Composite

검색결과 112건 처리시간 0.026초

Experimental behavior of eccentrically loaded RC slender columns strengthened using GFRP wrapping

  • Elwan, S.K.;Omar, M.A.
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.271-285
    • /
    • 2014
  • This paper aims to examine the behavior of slender reinforced concrete columns confined with external glass fiber reinforced polymers (GFRP) sheets under eccentric loads. The experimental work conducted in this paper is an extension to previous work by the author concerning the behavior of eccentrically loaded short columns strengthened with GFRP wrapping. In this study, nine reinforced concrete columns divided into three groups were casted and tested. Three eccentricity ratios corresponding to e/t = 0, 0.10, and 0.50 in one direction of the column were tested in each group. The first group was the control one without confinement with slenderness ratio equal 20. The second group was the same as the first group but fully wrapped with one layer of GFRP laminates. The third group was also fully wrapped with one layer of GFRP laminates but having slenderness ratio equal 15. The experimental results of another two groups from the previous work were used in this study to investigate the difference between short and slender columns. The first was control one with slenderness ratio equal 10 and the second was fully wrapped and having the same slenderness ratio. All specimens were loaded until failure. The ultimate load, axial deformation, strain in steel bars, and failure mechanisms of each specimen were generated and analyzed. The results show that GFRP laminates confining system is less effective with slender columns compared with short one, but this solution is still applied and it can be efficiently utilized especially for slender columns with low eccentric ratio.

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber

  • Chen, Juan;Liu, Xuan;Liu, Hongwei;Zeng, Lei
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.193-200
    • /
    • 2018
  • This paper presents an experimental work for short circular steel tube columns filled with normal concrete (NAC), recycled aggregate concrete (RAC), and RAC with silica fume and steel fiber. Ten specimens were tested under axial compression to research the effect of silica fume and steel fiber volume percentage on the behavior of recycled aggregate concrete-filled steel tube columns (RACFST). The failure modes, ultimate loads and axial load- strain relationships are presented. The test results indicate that silica fume and steel fiber would not change the failure mode of the RACFST column, but can increase the mechanical performances of the RACFST column because of the filling effect and pozzolanic action of silica fume and the confinement effect of steel fiber. The ultimate load, ductility and energy dissipation capacity of RACFST columns can exceed that of corresponding natural aggregate concrete-filled steel tube (NACFST) column. Design formulas EC4 for the load capacity NACFST and RACFST columns are proposed, and the predictions agree well with the experimental results from this study.

Mechanical properties of bamboo-epoxy composites a structural application

  • Biswas, Sandhyarani
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.221-231
    • /
    • 2012
  • In this study, the physical and mechanical properties of bamboo fiber reinforced epoxy composites were studied. Composites were fabricated using short bamboo fiber at four different fiber loading (0 wt%, 15 wt%, 30 wt% and 45 wt%). It has been observed that few properties increases significantly with respect to fiber loading, however properties like void fraction increases from 1.71% to 5.69% with the increase in fiber loading. Hence, in order to reduce the void fraction, improve hardness and other mechanical properties silicon carbide (SiC) filler is added in bamboo fiber reinforced epoxy composites at four different weight percentages (0 wt%, 5 wt%, 10 wt% and 15 wt%) by keeping fiber loading constant (45 wt%). The significant improvement of hardness (from 46 to 57 Hv) at 15 wt%SiC, tensile strength (from 10.48 to 13.44 MPa) at 10 wt% SiC, flexural strength (from 19.93 to 29.53 MPa) at 5 wt%SiC and reduction of void fraction (from 5.69 to 3.91%) at 5 wt%SiC is observed. The results of this study indicate that using particulate filled bamboo fiber reinforced epoxy composites could successfully develop a composite material in terms of high strength and rigidity for light weight applications compared to conventional bamboo composites. Finally, SEM studies were carried out to evaluate fibre/matrix interactions.

열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구 (A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites)

  • 백운경;남기법;노재승;박성은;노정우
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.136-142
    • /
    • 2021
  • 3D 프린팅 기술은 금형이 없이 다양한 형태의 제품을 만들기 쉬운 장점이 있지만, 기존 보편화된 성형법에 비해 기계적 물성이 낮고, 소재 및 제작 조건 등에 따라 기계적 물성이 크게 달라지는 문제가 있다. 한편, 높은 물성을 구현하기 위해서는 제조비용이 높아지는 문제가 있어, 이에 대한 연구 필요성이 증가하고 있다. 본 연구에서는 단섬유 탄소섬유 보강 나일론 필라멘트를 이용하여 3D 프린팅 열가소성 구조물을 제작하였다. 또한 인발 성형된 연속섬유 형태의 탄소섬유 혹은 유리섬유 강화 열경화성 복합재를 이용해 외측면을 보강하여 기계적 물성 향상 방법을 제시하였다. 보강재의 보강 위치와 섬유의 종류에 따른 굽힘물성 향상을 확인하였다.

단섬유강화 플라스틱 복합재료 구조해석 기법연구 (A study on structure analysis system for short fiber reinforced plastics)

  • 윤지용;김상우;박봉현;이성훈;권태헌;김기태
    • Composites Research
    • /
    • 제24권4호
    • /
    • pp.41-47
    • /
    • 2011
  • 본 연구는 사출 성형 공정을 통하여 제작되는 단섬유강화 플라스틱 복합재료의 구조해석 기법에 관한 내용으로 소재의 이방성 기계물성을 예측하고 이를 구조해석에 적용하도록 하였다. 사출 성형 공정을 통하여 제작되는 단섬유강화 플라스틱 복합재료의 구조해석에 있어서 기존의 경우는 일반적으로 소재의 기계적 물성을 균질 등방성 탄성 모델로 이용하여 왔으나, 실제 부품 파손 모드와 크게 상이한 경우가 많다. 이러한 점을 극복하고자 사출 성형 g,름 해석, 일방향성 복합재료의 Halpin-Tsai 식과 배향 평균 모델을 도입하여 단섬유강화 플라스틱 복합재료의 섬유배향 효과가 고려되도록 새로운 구조해석 시스템을 개발하였다. 해석의 정확도는 시편시험 결과와의 비교를 통하여 검증하였으며, 섬유 배향 및 웰드라인 영향 및 섬유 함량에 따른 변화가 해석에 장 반영됨을 확인하였다. 또한 자동차 부품에 개발된 해석 시스템을 적용하여 균질 등방 모델과 달리 부품의 위치별로 다른 기계적 성능이 반영되고, 사출 게이트 위치에 따라 유리섬유 배향이 변화하여 부품의 성능이 달라짐을 확인하였다.

섬유/입자 혼합 금속복합재료의 강화기구 해석 (Strengthening Mechanism of Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites)

  • 정성욱;이종해;정창규;송정일;한경섭
    • Composites Research
    • /
    • 제13권1호
    • /
    • pp.50-60
    • /
    • 2000
  • 본 연구는 섬유/입자 혼합금속복합재료의 강화기구를 분석하는 이론적 해석방법을 제시하였다. 혼합금속복합재료의 인장강도 및 탄성계수는 같은 보강재의 부피분율 가진 단섬유복합재료에 비해서 강도가 최대 20%까지 증가한다. 이러한 증가효과는 본 연구에서 새로이 제안된 클러스터 모델을 도입한 후 이에 따른 강화효과를 Modified Rule of Mixture을 적용하여 분석하였다. 해석결과 클러터구조는 인장강도에 대해서 섬유의 효율을 탄성계수에 대해서는 배향인자를 증가시키는 것으로 나타났다. 이론적 해석 결과는 $Al_2O_3$섬유/입자 예비성형체에 AC8A를 침투시켜 제조한 금속복합재료에 대한 실험결과와 비교되었으며 이를 통해 해석이론이 타당함을 확인하였다.

  • PDF

섬유강화형 복합레진브릿지의 파절강도 및 변연적합도에 관한 연구 (A COMPARATIVE STUDY ON THE FRACTURE STRENGTH AND MARGINAL FITNESS OF FIBER-REINFORCED COMPOSITE BRIDGE)

  • 최호근;신상완;임호남;서규원
    • 대한치과보철학회지
    • /
    • 제39권5호
    • /
    • pp.526-546
    • /
    • 2001
  • Fiber-reinforced composite(FRC) was developed as a structural component for dental appliances such as prosthodontic framework. FRC provides the potential for fabrication of a metal-free, excellent esthetic prostheses. It has demonstrated success as a result of its simple fabrication, natural colour, and marginal integrity, and fracture resistance of veneering composite resin and the FRC material. Although it has lots of merits, clinical and objective data are insufficient. The purpose of this study was to evaluate the fracture strength and the marginal fitness of fiber reinforced composite bridge in the posterior region for clinical application. Sixteen bridges of each group. $Targis/Vectris^{(R)}$, $Sculpture-Fibrekor^{(R)}$, and In-Ceram, were fabricated. All specimens were cemented with Panavia 21 to the master dies. Strength evaluation was accomplished by a universal testing machine (Instron). The marginal fitness was measured by using the stereoscope (${\times}50$). The results were as follows. : 1. The fracture strength according to the materials was significantly decreased in order In-Ceram($238.81{\pm}82$), Targis Vectris($176.25{\pm}18.93$), Sculpture-Fibrekor($120.35{\pm}20.08$) bridges. 2. FRC resin bridges were not completely fractured, while In-Ceram bridges were completely fractured in the pontic joint. 3. The marginal accuracy was significantly decreased in order Targis/Vectris ($60.71{\mu}m$), Sculpture-Fibrekor($73.10{\mu}m$) In-ceram Bridge ($83.81{\mu}m$). 4. The fitness of occlusal sites had a lower value than the marginal sites(P<0.001), and the marginal gaps of inner site of the pontic were greater than that of outer sites of the pontic. Fiber reinforced composite bridges are new, esthetic prosthesis and can be clinically used in anterior regions and short span bridges. However, caution must be exercised when extrapolating laboratory data to the clinical situation because there are no long term clinical data regarding the overall success of the FRC.

  • PDF