• 제목/요약/키워드: Short Circuit Current Density

검색결과 177건 처리시간 0.026초

Couette 흐름현상을 이용한 초고압변압기의 유동대전 기구 연구 (A Study on the Electrification Mechanism in UHV Transformer by Couette Flow)

  • 곽희로;정용기;권동진
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권4호
    • /
    • pp.93-102
    • /
    • 1995
  • The purpose of this paper is to analyze the streaming electrification mechanism (SEM) generated in UHV transformer. This experiment used Couette Charger and interpreted the mechanism hydromechanically and electromagnetically. This work estimated the turbulent core density ($\rho$o) by measuring the short circuit current (isc) and the open circuit voltage (νoc) generated in Couette Charger and also studied the changes of the short circuit (isc), the open circuit voltage (νoc), the turbulent core density ($\rho$o) and the conductivity ($\sigma$) with adding BTA to restrain streaming electrification. as a result adding BTA increased the conductivity of oil and decreased the turbulent core density($\rho$o).

  • PDF

전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측 (Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer)

  • 안현모;한성진
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.

A nuclear battery based on silicon p-i-n structures with electroplating 63Ni layer

  • Krasnov, Andrey;Legotin, Sergey;Kuzmina, Ksenia;Ershova, Nadezhda;Rogozev, Boris
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1978-1982
    • /
    • 2019
  • The paper presents the electrical performance measurements of a prototype nuclear battery and two types of betavoltaic cells. The electrical performance was assessed by measuring current-voltage properties (I-V) and determining the short-circuit current and the open-circuit voltage. With 63Ni as an irradiation source, the open-circuit voltage and the short-circuit current were determined as 1 V and 64 nA, respectively. The prototype consisted of 10 betavoltaic cells that were prepared using radioactive 63Ni. Electroplating of the radioactive 63Ni on an ohmic contact (Ti-Ni) was carried out at a current density of 20 mA/㎠. Two types of betavoltaic cells were studied: with an external 63Ni source and a 63Ni-covered source. Under irradiation of the 63Ni source with an activity of 10 mCi, the open-circuit voltage Voc of the fabricated cells reached 151 mV and 109 mV; the short-circuit current density Jsc was measured to be 72.9 nA/cm2 and 64.6 nA/㎠, respectively. The betavoltaic cells had the fill factor of 55% and 50%, respectively.

비정질실리콘 pin태양전지에서 입사광 세기에 따른 전류 저압특성 (Incident Light Intensity Dependences of Current Voltage Characteristics for Amorphous Silicon pin Solar Cells)

  • 장진;박민
    • 대한전자공학회논문지
    • /
    • 제23권2호
    • /
    • pp.236-242
    • /
    • 1986
  • The dependence of the current-voltage characteristics of hydrogenated amorphous silicon pin solar cells on the illumimination light intensity has been investigated. The open circuit voltage increases linearly with increasing the logarithm of light intensity up to AM 1, and nearly saturates above AM 1, indicating the open circuit voltage approaching the built-in potential of the pin solar cell above AM 1. The short circuit current density increase with light intensity in proportion to I**0.85 before and I**0.97 after light exposure. Since the series resistance devreses and shunt resistance increases with light intensily, the fill factor increases with light illumination. To increase the fill factor at high illumination in large area solar cells, t6he grid pattern on the ITO substrates should be made. Long light exposure on the solar cells gives rise to the increase of bulk resistance and defect states, resulting in the decrease of the fil factor and short circuit current density. The potential drop in the bulk of the a-Si:H pin solar cells at short circuit condition increases with decreasing temperature, and increases after long light exposure.

  • PDF

하이브리드 태양전지 제작에 있어서 유기물의 후열처리 온도에 따른 단락전류밀도의 변화 (The Changes of Short Circuit Current Density according to the Post-annealing Temperature of Organic Materials in the Hybrid Photovoltaics)

  • 권동오;신민정;안형수;이삼녕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.81-85
    • /
    • 2015
  • 본 연구에서는 Poly (3-hexylthiophene-2,5-diyl) (P3HT):[6,6]-Phenyl C61 butyric acid methyl ester (PCBM)과 GaN를 이용하여 유무기 하이브리드 광전변환소자를 제작함에 있어서, P3HT:PCBM 활성층의 열처리가 소자의 단락전류밀도에 미치는 영향을 알아보았으며 이때 유기물의 농도와 혼합비율을 달리 하였다. 유기물 각각의 층을 코팅하여 층을 만들 때마다 열처리 한 경우, 즉 pre-annealing샘플과 pre-annealing 과정을 거쳐 제작된 소자 전체를 한 번 더 열처리하여 즉 post-annealing까지 행한 샘플을 비교하였다. 그 결과 post-annealing한 샘플이 더 높은 단락전류밀도의 값을 가졌고 이때 P3HT와 PCBM은 1wt%와 1:1 혼합비율에서 좋은 열처리 효과를 나타내었다.

ITO/InP 태양전지 제작에 응용된 sulfur passivation의 효과 (The effects of sulfur passivation on the performance of ITO/InP solar cells)

  • 이영철;한교용
    • 전자공학회논문지D
    • /
    • 제34D권9호
    • /
    • pp.50-55
    • /
    • 1997
  • In order to improve the electrical performance of ITO/InP solar cells, sulfur passivation technique was employed using (N $H_{4}$)$_{2}$ $S_{x}$ solution. Passivation effects were analyzed by measuring the short circuit current density ( $J_{sc}$ ) of solar cells and photoluminescence (PL) of ITO/InP interfaces. This paper firstly reports the sulfur passivation effects by investigating the correlation between the PL intensity and the short circuit current. Generally, PL intensity and the short circuit current of sulfur passivated sampels wer eincreased, and showed the same trend. Especially, samples prepared at 60.deg. C (N $H_{4}$)$_{2}$ $S_{x}$ solution exhibited the highest $J_{sc}$ and PL intensity. These results demonstrated that the short circuit currents was influenced by the ITO/InP interface states.

  • PDF

광전극 두께와 표면적 변형에 따른 DSSC의 효율 특성 (DSSCs Efficiencies of Photo Electrode Thickness and Modified Photo Electrode Surface Area)

  • 권성열;양욱;주택원
    • 한국전기전자재료학회논문지
    • /
    • 제27권2호
    • /
    • pp.115-120
    • /
    • 2014
  • Photo electrode is an important component for DSSC. DSSCs electrical characteristics and efficiencies fabricated with different $TiO_2$ photo electrodes thickness and modified phoro electrode surface area were studied. $11{\mu}m$ $TiO_2$ photo electrode shows a 4.956% efficiency. The highest short circuit current density was a $9.949mA/cm^2$. Efficiencies and short circuit current density increased as tape casting thickness decreased. Modified surface area of the photo electrode by needle stamp processing were studied. 200 times needle stamp processing on photo electrodes shows a highest 5.168% efficiency. Also the short circuit current density was a $10.261mA/cm^2$.

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

Selenium박막의 광학적 특성연구 (A study on the optical characteristics of selenium thin film)

  • 허창수;오영주
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.44-50
    • /
    • 1996
  • In this study, Selenium device was fabricated by vacuum evaporation method with the substrate temperature at room temperature and its electrical and optical properties were investigated to be used in optical device. The film properties largely depended on the transmittance and annealing time, and improved with aging owing to stress release. We found that the photocurrent of the films increase linearly with light illumination. As a result, Selenium device made by this method yielded a short circuit current density of 10.5mA/$\textrm{cm}^2$, an open circuit voltage of 39OmV.

  • PDF

국내 수용가계통에서의 초전도한류기 적용가능성 검토 (A study on the application of HTS-FCL in Korean Customer Power System)

  • 이승렬;김종율;윤재영
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권3호
    • /
    • pp.44-49
    • /
    • 2004
  • As the load density of KEOCO system is higher, the fault current can be much higher than SCC(Short Circuit Capacity) of circuit breaker. Fault current exceeding the rating of circuit breaker is a very serious problem in high density load area, which can threaten the stability of whole power system. Even though there are several alternatives to reduce fault current, as the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductivity Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. This study presents the application of 154kV HTS-FCL in Korean power system.