• Title/Summary/Keyword: Shopbot

Search Result 3, Processing Time 0.023 seconds

Implementation of the Agent using Universal On-line Q-learning by Balancing Exploration and Exploitation in Reinforcement Learning (강화 학습에서의 탐색과 이용의 균형을 통한 범용적 온라인 Q-학습이 적용된 에이전트의 구현)

  • 박찬건;양성봉
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.672-680
    • /
    • 2003
  • A shopbot is a software agent whose goal is to maximize buyer´s satisfaction through automatically gathering the price and quality information of goods as well as the services from on-line sellers. In the response to shopbots´ activities, sellers on the Internet need the agents called pricebots that can help them maximize their own profits. In this paper we adopts Q-learning, one of the model-free reinforcement learning methods as a price-setting algorithm of pricebots. A Q-learned agent increases profitability and eliminates the cyclic price wars when compared with the agents using the myoptimal (myopically optimal) pricing strategy Q-teaming needs to select a sequence of state-action fairs for the convergence of Q-teaming. When the uniform random method in selecting state-action pairs is used, the number of accesses to the Q-tables to obtain the optimal Q-values is quite large. Therefore, it is not appropriate for universal on-line learning in a real world environment. This phenomenon occurs because the uniform random selection reflects the uncertainty of exploitation for the optimal policy. In this paper, we propose a Mixed Nonstationary Policy (MNP), which consists of both the auxiliary Markov process and the original Markov process. MNP tries to keep balance of exploration and exploitation in reinforcement learning. Our experiment results show that the Q-learning agent using MNP converges to the optimal Q-values about 2.6 time faster than the uniform random selection on the average.

Determinants of Online Price Sensitivity Using Web Log Data (웹 로그 데이터를 이용한 온라인 소비자의 가격민감도 영향 요인에 관한 연구)

  • Jun Jong-Kun;Park Cheol
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • This paper empirically analyzed consumer price search behavior using Web log data of a Korean web site for price comparison. Consumer click-stream data of the site was used to test the effects of price level, product category, third party certification, reputation of retailers on click behavior. According to the descriptive statistics, 67.4% of shopbot users clicked the offer which was the lowest price returned in a search. We found that third party certification and reputation of retailers were significant determinants of clicking the lowest priced offer from legit analysis. We also applied Tobit regression analysis to estimate the price premium of the two determinants, but only reputation of retailers was found to have price premium of 4.9%.

  • PDF

MORPHEUS: A More Scalable Comparison-Shopping Agent (MORPHEUS: 확장성이 있는 비교 쇼핑 에이전트)

  • Yang, Jae-Yeong;Kim, Tae-Hyeong;Choe, Jung-Min
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.2
    • /
    • pp.179-191
    • /
    • 2001
  • Comparison shopping is a merchant brokering process that finds the best price for the desired product from several Web-based online stores. To get a scalable comparison shopper, we need an agent that automatically constructs a simple information extraction procedure, called a wrapper, for each semi-structured store. Automatic construction of wrappers for HTML-based Web stores is difficult because HTML only defines how information is to be displayed, not what it means, and different stores employ different ways of manipulating customer queries and different presentation formats for displaying product descriptions. Wrapper induction has been suggested as a promising strategy for overcoming this heterogeneity. However, previous scalable comparison-shoppers such as ShopBot rely on a strong bias in the product descriptions, and as a result, many stores that do not confirm to this bias were unable to be recognized. This paper proposes a more scalable comparison-shopping agent named MORPHEUS. MORPHEUS presents a simple but robust inductive learning algorithm that antomatically constructs wrappers. The main idea of the proposed algorithm is to recognize the position and the structure of a product description unit by finding the most frequent pattern from the sequence of logical line information in output HTML pages. MORPHEUS successfully constructs correct wtappers for most stores by weakening a bias assumed in previous systems. It also tolerates some noises that might be present in production descriptions such as missing attributes. MORPHEUS generates the wrappers rapidly by excluding the pre-processing phase of removing redundant fragments in a page such as a header, a tailer, and advertisements. Eventually, MORPHEUS provides a framework from which a customized comparison-shopping agent can be organized for a user by facilitating the dynamic addition of new stores.

  • PDF