• Title/Summary/Keyword: Shop Floor Monitoring

Search Result 29, Processing Time 0.03 seconds

Downtime tracking for small-medium sized manufacturing company using shop floor monitoring (생산현장 모니터링을 이용한 중소 제조기업용 비가동 시간 수집 및 분석)

  • Lee, Jai-Kyung;Lee, Seung-Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.65-72
    • /
    • 2014
  • To improve the productivity of manufacturing company, the analysis of loss in shop floor has to be conducted and validated. This paper introduces the downtime tracking module using the pre-developed shop floor information acquisition system. To collect the downtime, it utilized shop floor monitoring information, user-registered downtime event, equipment diagnosis algorithm and operator's input. Also, it provided the user interface for the analysis of downtime. From the results of a pilot study, the usability of developed system was validated.

Developing a Data Model of Product Manufacturing Flow for an IC Packaging WIP System

  • Lin, Long-Chin;Chen, Wen-Chin;Sun, Chin-Huang;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.70-94
    • /
    • 2005
  • The IC packaging industry heavily relies on shop floor information, necessitating the development of a model to flexibly define shop floor information and timely handle manufacturing data. This study presents a novel data model of product manufacturing flow to define shop floor information to effectively respond to accelerated developments in IC package industry. The proposed data model consists of four modules: operation template setup, general process setup, enhanced bill of manufacture (EBOMfr) setup, and work-order process setup. The data model can flexibly define the required shop floor information and decision rules for shop floor product manufacturing flow, allowing one to easily adopt changes of the product and on the shop floor. However, to handle floor dynamics of the IC packaging industry, this work also proposes a WIP (i.e. work-in-process) system for monitoring and controlling the product manufacturing flow on the shop floor. The WIP system integrates the data model with a WIP execution module. Furthermore, an illustrative example, the MIRL WIP System, developed by Mechanical Industrial Research Laboratories of Industrial Technology Research Institute, demonstrates the effectiveness of the proposed model.

Study of the Effects of Supplier Monitoring on Shop floor Productivity (공급사 모니터링이 현장생산성에 미치는 영향에 관한 연구)

  • Cho, BooYun;Kang, Gi-Choon;Hyun, MinCheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7025-7039
    • /
    • 2014
  • Focal companies (hereafter called buyers) adopt outsourcing practices from a supply chain management strategy to be competitive. Buyers face the bridge transfer after outsourcing contracts, and the monitoring practices would be the only control mechanism left to prevent losing control over the suppliers. This study suggests the set of monitoring practices (i.e., capability, activity and outcome monitoring) as the independent variables to enhance the buyer-supplier collaboration and supplier's performance. In addition the buyer's efforts of monitoring are assumed to influence the buyer's shop floor productivity mediated by the supplier's performance and buyer-supplier collaboration. The results showed that the monitoring practices are meaningful antecedents to the supplier's performance and buyer-supplier collaboration, which fully mediates between the monitoring practices and buyer's shop floor productivity. The mediating role of the buyer-supplier collaboration between activity monitoring and shop floor productive has been rejected, because the negative effect of activity monitoring on buyer-supplier collaboration conflicts with the positive impact of buyer-supplier collaboration on shop floor productive. The theoretical contribution and managerial implications with limitations have been discussed.

Development of Versatile CAM System (PosCAM) Supporting CNC Shop Floor Operation (CNC Shop Floor 조업지원용 다능형 CAM시스템 (PosCAM) 개발)

  • 서석환;지우석;김성구;홍희동;조정훈;정대혁;김창남
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.339-349
    • /
    • 1999
  • The punose of this paper is to introduce the comprehensive CAM system (called PosCAM) supporting various function requested from shop floor operators. PosCAM is comported of two subsystems (PosCAM I and PosCAM II) which are designed to make up for the contemporary CAD/CAM systems. PosCAM I is mainly for : a) verifying the part programs written in both custom macros and standard G-codes, b) enhancing machining productivity and quality with built-in cutting conditions and feedrate optimization algorithm. PosCAM II is for : a) efficiently managing the numerous part programs and tool data stored in CNC memory, and b) integratively controlling and monitoring various CNCs from the control center through RS-422 with DNC 2 protocol. The developed systems have been tested via various experiments, and can be Applied for the industrial CNC machine shop as a means for enhancing productivity. The PosCAM system has been implemented and successfully used in the Machine Shop Department of PosCAM since march 1998.

  • PDF

Simulation for Shop Floor Control

  • Cho, Hyunbo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1996.05a
    • /
    • pp.15-15
    • /
    • 1996
  • A shop floor control system (SFCS) is the central part of a CIM system used to control the activities of several pieces of manufacturing equipment (e.g., NC machines, robots, conveyors, AGVs, AS/RS). The SFCS receives orders and related process plans, and then performs selecting a specific process routing, allocating resources, scheduling the workpieces, downloading the processing instructions (e.g., RS-274 instructions for NC machines, VAL II programs for robot), monitoring the progress of activities, detecting and recovering from errors, and preparing reports on the status of the manufacturing system. Simulation has been utilized in discovering control policies used for resolving shop floor be control problems such as resource contentions, part dispatching, deadlock. The simulation model must be designed to respond to real-time data coming from a shop floor. However, to rapidly build a realtime simulation model of SFCS cannot be easily accomplished. This talk is to address an automatic program generator of discrete event simulation model for shop floor control from process plans and resource models. The program generator is capable of constructing complete discrete simulation models for multi-product and multi-stage flexible manufacturing systems.

  • PDF

Production Information Monitoring System for CIM in Footwear Industry

  • Kim, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.459-464
    • /
    • 2009
  • This paper presents a production information monitoring system as an infrastructure of CIM system in footwear industry. The system is composed of hardware devices of terminal, communication converter, line controller and software for manufacturing processes. A terminal like a scanner is used for shop floor data input and a line controller is used to link between terminal and server. LAN and RS485 are used for connecting hardware components and deliver their information mutually. In the system, real time production information is acquired from information resources such as group of uppers and soles. The collected production information is delivered to a line controller and analyzed. Server receives information from line controller and machines for production management. Production planning information that is machined in the server is delivered to the shop floor and used for the production management of work in process, and used for improvement of productivity in a footwear production company. The implementation of the developed system shows the effectiveness of the system.

Acquisition of Data of Equipments on Shop Floor Using Interface Between Various Equipments (다양한 생산 설비와의 인터페이스를 고려한 설비정보 수집)

  • Nam, So-Jeong;Lee, Jai-Kyung;Lee, Sung-Woo;Park, Jong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • There is much information of equipment in shop floor because the manufacturing processes are different as the equipment within the manufacturing process is varied. To provide effective process information to MES and other production systems, the DAS requires an equipment monitoring system that takes into account the characteristics of the equipment on the shop floor. In this study, we proposed some methods for collecting the required information about various equipments on a shop floor. The equipments such as CNC can be interfaced with the DAS by using a PLC-based method and a sensor-based interface board can be used to interface general equipments. The proposed methods can be used to collect information on the shop floor in real-time. Moreover these methods are very adaptive and can be easily modified according to the changes made to the shop floor. The information about a real shop floor acquired by employing these methods is saved in a database and the can be provided to a supervisor and MES so that they are aware of the status of the shop floor.

The Study of Shop Floor Control System Under CIM Environment (CIM 환경에서의 현장관리시스템)

  • 남호기
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.46
    • /
    • pp.197-206
    • /
    • 1998
  • In recent years there has been a tremendous upsurge of interest in Shop Floor Control System (SFCS) design and analysis. We reviewed current computer-aided shop floor control system. It is concluded that current methodologies support, in a very restricted sense, these planning, scheduling, and monitoring activities and that enhanced performance can be achieved via an integrated approach. In this paper we present an interdisciplinary approach to the development and installing of sophisticated shop floor control systems. Interdisciplinary design will form the basis of designing SFCS in new knowledge intensive era. Interdisciplinary design means more than just applying knowledge from other domains, such as psychology and organization science to design of SFCS. The interdisciplinary approach is verified by an illustrative case study.

  • PDF

A Study on Web based Monitoring System of Machine Tool (웹기반의 공작기계 원격감시 기술)

  • 김동훈;김선호;한기상;김주한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.60-63
    • /
    • 1997
  • Recently, factory automation and shop floor control system need a web based remote monitoring technology to control effectively machine tool. This paper describes a web based remote monitoring system which is concerned with open architecture controller for machine tool. The environment of this system consists of a lot of elements such as web server, database, machine tool, pc based controller, client computers and script programs, also which is interconnected by network including intranet or internet. Designed script programs, also which is interconnected by network including intranet or internet. Designed script program service current status and faults information of machine to remote users who want to monitor machine tool. Additionally those have various functions to service we board for q&a, downloading data and information of after-service managers.

  • PDF