The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)
-
- Journal of Intelligence and Information Systems
- /
- v.18 no.4
- /
- pp.19-42
- /
- 2012
Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.
The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.
The flow theory becomes one of the most important frameworks in the internet research arena. Hoffman and Novak proposed a hierarchical flow model showing the antecedents and outcomes of flow and the relationship among these variables in the hyper-media computer circumstances (Hoffman and Novak 1996). This model was further tested after their initial research (Novak, Hoffman, and Yung 2000). At their paper, Hoffman and Novak explained that the balance of challenge and skill leads to flow which means the positive optimal state of mind (Hoffman and Novak 1996). An imbalance between challenge and skill, leads to negative states of mind like anxiety, boredom, apathy (Csikszentmihalyi and Csikszentmihalyi 1988). Almost all research on the flow 4-channel model have been focusingon flow, the positive state of mind (Ellis, Voelkl, and Morris 1994 Mathwick and Rigdon 2004). However, it also needs to examine the formation of the negative states of minds and their outcomes. Flow researchers explain play or playfulness as antecedents or the early state of flow. However, play has been regarded as a distinct concept from flow in the flow literatures (Hoffman and Novak 1996; Novak, Hoffman, and Yung 2000). Mathwick and Rigdon discovered the influences of challenge and skill on play; they also observed the influence of play on web-loyalty and brand loyalty (Mathwick and Rigdon 2004). Unfortunately, they did not go so far as to test the influences of play on state of mind. This study focuses on the relationships between state of mind in the flow 4-channel model and play. Early research has attempted to hypothetically explain state of mind in flow theory, but has not been tested except flow until now. Also the importance of play has been emphasized in the flow theory, but has not been tested in the flow 4-channel model context. This researcher attempts to analyze the relationships among state of mind, skill of play, challenge, state of mind and web loyalty. For this objective, I developed a measure for state of mind and defined the concept of play as a trait. Then, the influences of challenge and skill on the state of mind and play under on-line shopping conditions were tested. Also the influences of play on state of mind were tested and those of flow and play on web loyalty were highlighted. 294 undergraduate students participated in this research survey. They were asked to respond about their perceptions of challenge, skill, state of mind, play, and web-loyalty to on-line shopping mall. Respondents were restricted to students who bought products on-line in a month. In case of buying products at two or more on-line shopping malls, they asked to respond about the shopping mall where they bought the most important one. Construct validity, discriminant validity, and convergent validity were used to check the measurement validations. Also, Cronbach's alpha was used to check scale reliability. A series of exploratory factor analyses was conducted. This researcher conducted confirmatory factor analyses to assess the validity of measurements. All items loaded significantly on their respective constructs. Also, all reliabilities were greater than.70. Chi-square difference tests and goodness of fit tests supported discriminant and convergent validity. The results of clustering and ANOVA showed that high challenge and high skill leaded to flow, low challenge and high skill leaded to boredom, and low challenge and low skill leaded to apathy. But, it was different from my expectation that high challenge and low skill didnot lead to anxiety but leaded to apathy. The results also showed that high challenge and high skill, and high challenge and low skill leaded to the highest play. Low challenge leaded to low play. 4 Structural Equation Models were built by flow, anxiety, boredom, apathy for analyzing not only the impact of play on state of mind and web-loyalty, but also that of state of mind on web-loyalty. According the analyses results of these models, play impacted flow and web-loyalty positively, but impacted anxiety, boredom, and apathy negatively. Results also showed that flow impacted web-loyalty positively, but anxiety, boredom, and apathy impacted web-loyalty negatively. The interpretations and implications of the test results of the hypotheses are as follows. First, respondents belonging to different clusters based on challenge and skill level experienced different states of mind such as flow, anxiety, boredom, apathy. The low challenge and low skill group felt the highest anxiety and apathy. It could be interpreted that this group feeling high anxiety or fear, then avoided attempts to shop on-line. Second, it was found that higher challenge leads to higher levels of play. Test results show that the play level of the high challenge and low skill group (anxiety group) was higher than that of the high challenge and high skill group (flow group). However, this was not significant. Third, play positively impacted flow and negatively impacted boredom. The negative impacts on anxiety and apathy were not significant. This means that the combination of challenge and skill creates different results. Forth, play and flow positively impacted web-loyalty, but anxiety, boredom, apathy had negative impacts. The effect of play on web-loyalty was stronger in case of anxiety, boredom, apathy group than fl ow group. These results show that challenge and skill influences state of mind and play. Results also demonstrate how play and flow influence web-loyalty. It implies that state of mind and play should be the core marketing variables in internet marketing. The flow theory has been focusing on flow and on the positive outcomes of flow experiences. But, this research shows that lots of consumers experience the negative state of mind rather than flow state in the internet shopping circumstance. Results show that the negative state of mind leads to low or negative web-loyalty. Play can have an important role with the web-loyalty when consumers have the negative state of mind. Results of structural equation model analyses show that play influences web-loyalty positively, even though consumers may be in the negative state of mind. This research found the impacts of challenge and skill on state of mind in the flow 4-channel model, not only flow but also anxiety, boredom, apathy. Also, it highlighted the role of play in the flow 4-channel model context and impacts on web-loyalty. However, tests show a few different results from hypothetical expectations such as the highest anxiety level of apathy group and insignificant impacts of play on anxiety and apathy. Further research needs to replicate this research and/or to compare 3-channel model with 4-channel model.