• Title/Summary/Keyword: Shoot the Moon>

Search Result 139, Processing Time 0.247 seconds

Uptake Properties of Germanium to Vegetable Plants and Its Effect on Seed Germination and on Early Stage Growth (채소종자 발아와 유묘생장에 미치는 유기 또는 무기게르마늄의 효과 및 흡수특성)

  • Han, Myung-Ja;Kim, Sung-Un;Seo, Dong-Cheol;Cheong, Yong-Hwa;Lee, Do-Jin;Park, Moon-Su;Rim, Yo-Sup;Sohn, Bo-Kyoon;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.217-222
    • /
    • 2007
  • To investigate effects of inorganic $(GeO_2)$ and organic (Ge-132) germanium (Ge) on seed germination and on early stage growth of plane and the uptake characteristics, various concentrations (0, 10, 25, 50, 100 mg $L^{-1}$) of Ge to popular vegetables such as leaf mustard, chinese cabbage and pak-choi, respectively, were treated. On seed germination, no significant effect was observed in both inorganic and organic Ge treatments except 100 mg $L^{-1}$ treatment of inorganic Ge. Exogenous inorganic Ge ($10{\sim}100$ mg $L^{-1}$ treatments significantly inhibited the early root elongation growth of all plants. However, slight enhancement of early shoot elongation was detected in low concentrations (10 and 25 mg $L^{-1}$) of Ge in the leaf mustard and chinese cabbage plants. Organic Ge treatments significantly stimulated the 개ot and shoot growth at the 10, 25 and 50 mg $L^{-1}$ treatments. Ge was accumulated linearly in the vegetables as both inorganic and organic Ge concentrations were increased. Interestingly, total contents of Ge in plants with Ge-132 treatments were $2\sim4.5$ times more than those with inorganic Ge treatments in all concentrations. At 25 mg $L^{-1}$ treatment of Ge, contents of Ge in vegetables are following: in leaf mustard, inorganic Ge: 0.37 mg $g^{-1}dw$ and organic Ge: 1.47 mg $g^{-1}dw;$ in the chinese cabbage, inorganic Ge: 0.4 mg $g^{-1}dw$ and organic Ge: 0.86 mg $g^{-1}dw;$ in the pak-choi, inorganic Ge: 0.33 mg $g^{-1}dw$ and organic Ge: 0.70 mg $g^{-1}dw$, respectively. These results showed organic Ge is much better on early stage seedling growth and on germanium accumulation of vegetables than inorganic Ge.

Enhancement of Bioactive Compounds in Mugwort Grown under Hydroponic System by Sucrose Supply in a Nutrient Solution (양액 내 자당 처리에 의한 수경재배 쑥의 생리활성물질 증진)

  • Moon-Sun Yeom;Jun-Soo Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • Sucrose (suc) is a disaccharide that consists of glucose (glu) and fructose (fru). It is a carbohydrate source that acts as a nutrient molecule and a molecular signal that regulates gene expression and alters metabolites. This study aimed to evaluate whether suc-specific signaling induces an increase in bioactive compounds by exogenous suc absorption via roots or whether other factors, such as osmotic stress or biotic stress, are involved. To compare the osmotic stress induced by suc treatment, 4-week-old cultured mugwort plants were subjected to Hoagland nutrient solution with 10 mM, 30 mM, and 50 mM of suc or mannitol (man) for 3 days. Shoot fresh weight in suc and man treatments was not significantly different from the control. Both man and suc treatments increased the content of bioactive compounds in mugwort, but they displayed different enhancement patterns compared to the suc treatments. Mugwort extract treated with suc 50 mM effectively protected HepG2 liver cells damaged by ethanol and t-BHP. To compare the biotic stress induced by suc treatment, 3-week-old mugwort plants were subjected to microorganism and/or suc 30 mM with Hoagland nutrient solution. Microorganisms and/or suc 30 mM treatments showed no difference about the shoot fresh weight. However, sugar content in mugwort treated with suc 30 mM and microorganism with suc 30 mM treatment was significantly higher than that of the control. Suc 30 mM and microorganism with suc 30 mM were effective in enhancing bioactive compounds than microorganism treatment. These results suggest that mugwort plants can absorb exogenous suc via roots and the enhancement of bioactive compounds by suc treatment may result not from osmotic stress or biotic stress because of microorganism, but by suc-specific signaling.

Effect of Growing Part Following Local Heating for Cherry Tomato on Temperature Distribution of Crop and Fuel Consumption (방울토마토 생장부 추종 국소난방이 군락 온도분포 및 연료소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Lee, Tae Seok;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.217-225
    • /
    • 2015
  • Local heating system providing hot air locally to growing parts including shoot apex and flower cluster which were temperature-sensitive organs of cherry tomato was developed to reduce energy consumption for greenhouse heating without decline of crop growth. Growing part following local heating system was composed of double duct distributer which connected inner and outer ducts with hot air heater and winder which moved ducts up and down following growing parts with plant growth. Growing part local heating system was compared with conventional bottom duct heating system with respect to distributions of air and leaf surface temperatures according to height, growth characteristics and energy consumption. By growing part local heating, air temperature around growing part was maintained $0.9{\sim}2.0^{\circ}C$ higher than that of lower part of crop and leaf surface temperature was also stratified according to height. Investigations on crop growth characteristics and crop yield showed no statistically significant difference except for plant height between bottom duct heating and growing part local heating. As a result, the growing part local heating system consumed 23.7% less heating energy than the bottom duct heating system without decrease of crop yield.

Proteome analysis of sorghum leaf and root in response to heavy metal stress

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Lee, Dong-Gi;Sarker, Kabita;Lee, Moon-Soon;Xin, Zhanguo;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.24-24
    • /
    • 2017
  • Heavy metals at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to oxidative stress in plants. The present study was performed to explore the metal tolerance mechanism in Sorghum seedling. Morpho-physiological and metal ions uptake changes were observed prominently in the seedlings when the plants were subjected to different concentrations of $CuSO_4$ and $CdCl_2$. The observed morphological changes revealed that the plants treated with Cu and Cd displayed dramatically altered shoot lengths, fresh weights, and relative water content. In addition, the concentration of Cu and Cd was markedly increased by treatment with Cu and Cd, and the amount of interacting ions taken up by the shoots and roots was significantly and directly correlated with the applied level of Cu and Cd. Using the 2-DE method, a total of 24 and 21 differentially expressed protein spots from sorghum leaves and roots respectively, 33 protein spots from sorghum leaves under Cd stress were analyzed using MALDI-TOF/TOF MS. However, the over-expression of GAPDH plays a significant role in assisting Sorghum bicolor to attenuate the adverse effects of oxidative stress caused by Cu, and the proteins involved in resistance to stress helped the sorghum plants to tolerate high levels of Cu. Significant changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. In addition, the up-regulation of glutathione S-transferase and cytochrome P450 may play a significant role in Cd-related toxicity and stress responses. The results obtained from the present study may provide insights into the tolerance mechanism of seedling leaves and roots in Sorghum under heavy metal stress.

  • PDF

Comparative physiological and proteomic analysis of leaf in response to cadmium stress in sorghum

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Kim, Sang-Woo;Lee, Moon-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.124-124
    • /
    • 2017
  • Cadmium (Cd) is of particular concern because of its widespread occurrence and high toxicity and may cause serious morpho-physiological and molecular abnormalities in in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potentiality associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and $150{\mu}M$) of $CdCl_2$, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights, and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied level of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Significant changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. In addition, the up-regulation of glutathione S-transferase and cytochrome P450 may play a significant role in Cd-related toxicity and stress responses. Our study provides insights into the integrated molecular mechanisms involved in response to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. The upregulation of these stress-related genes may be candidates for further research and use in genetic manipulation of sorghum tolerance to Cd stress.

  • PDF

Characteristics of Heavy Metals Uptake by Plants: Based on Plant Species, Types of Heavy Metals, and Initial Metal Concentration in Soil (식물정화공법에서 다양한 중금속의 식물체로의 흡수 및 축적 특성 비교: 식물체 종류, 중금속 종류, 토양 내 중금속 농도를 중심으로)

  • Jeong, Seul-Ki;Kim, Tae-Sung;Moon, Hee-Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.61-68
    • /
    • 2010
  • Phytoextraction, one type of phytoremediation processes, has been widely used in the removal of heavy metals from polluted soil. This paper reviewed literature on metal uptake by plants and characterized the metal uptake by types of metals (Zn, Cu, Pb, Cd, and As), plant species, initial metal concentrations in soil and the distribution of metals in different parts of plants. The potential of metal accumulation and transport by plants was closely related to plants species, types of metals, and initial metal concentrations in soil. The plants belonging to Brassicaceae, Solanaceae, Poaceae, and Convolvulaceae families have shown the high potential capacity of Cd accumulation. The Gentianaceae, Euphorbiaceae, and Polygonaceae families have exhibited relatively high Pb uptake potential while the Pteridaceae and Cyperaceae families have shown relatively high Zn uptake potential. The Pteridaceae family could uptake a remarkably high amount of As compared with other plant families. The potential metal accumulation per plant biomass has increased with increasing initial metal concentration in soil up to a certain level and then decreased for Cd and Zn. For As, only Pteris vittata had a linear relationship between initial concentration in soil and potential of metal uptake. However, a meaningful relationship for Pb was not found in this study. Generally, the plants having high metal uptake potential for Cd or Pb mainly accumulated the metal in their roots. However, the Euphorbiaceae family has accumulated more than 80% of Pb in shoot. Zn has evenly accumulated in roots and stems except for the plants belonging to the Polygonaceae and Rosaceae families which accumulated Zn in their leaves. The Pteridaceae family has accumulated a higher amount of As in leaves than roots. The types of metals, plant species, and initial metal concentration in soil influence the metal uptake by plants. It is important to select site-specific plant species for effective removal of metals in soil. Therefore, this study may provide useful and beneficial information on metal accumulation by plants for the in situ phytoremediation.

Changes in the Physico-Chemical Properties of Growing Media and the Growth of Oriental Melon Seedlings(Cucumis melo L.) by Charcoal Application (활성탄 혼합 비율에 따른 상토의 이화학성 변화와 참외(Cucumis melo L.)묘의 생육)

  • Kim, Kab-Cheol;Uhm, Mi-Jeong;Moon, Young-Hun;Choi, Yeong-Geun
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.61-66
    • /
    • 2004
  • To investigate the effect of charcoal on the physico-chemical characteristics in the growing media and the growth of oriental melon, six treatment, 0%, 10%, 20%, 30%, 40%, and 50% charcoal, were added into the growing media, Baroker. The value of pH in the charcoal contained growing media (CGM) was recorded higher and further increased by raising the charcoal ratio and by growing period. In 20% CGM, the range of pH was adequate to grow crop as 5.2${\sim}$5.8. Contents of Ca and K in CGM increased by raising the ratio of charcoal, while contents of Mg and Na decreased. The growth of oriental melon seedlings in 20% and 30% CGM was better than in other treatments, in terms of fresh and dry weight of shoot, plant height, leaf area, lear width and relative growth rate. Both the physico-chemical properties of growing media and the growth of oriental melon seedlings were changed by the addition of charcoal. These results suggest that charcoal can be used as mixing material with other potting media for producing the seedling of good quality.

Study on the over-wintering stage of citrus leaf miner Phyllocnistis citrella Stainton(Lepidoptera: Gracillariidae) in Jeju, Korea (제주도 노지재배 감귤원 내 귤굴나방 월동태 구명)

  • Soon Hwa Kwon;Kihye Shin;Young Eel Moon;Doog-Soon Kim
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.542-549
    • /
    • 2021
  • Citrus leafminer (Phyllocnistis citrella) is an economically important pest in citrus orchards. This study was conducted to elucidate the over-wintering stage of P. citrella through experiments on the survival rate of P. citrella at low temperatures and field investigations during the winter season. There was a significant difference in the survival period depending upon the over-wintering stage of P. citrella at low temperatures, and the adults survived longer than the pupae. Evaluation of the survival period after inoculating citrus orchards with P. citrella adults and pupae showed that only the adults survived until mid-March of the following year, but all pupae died in January. This suggests that considering the fact that the germination of spring shoots in Jeju generally begins in mid-March, over-wintering adults are likely to form an early population the next year. However, pupae may not contribute to the formation of the initial population in the early season after wintering in fall shoots that are prone to freezing damage in winter because P. citrella could only survive in pupal chambers formed in fall shoots. Therefore, these results suggest that P. citrella adults that emerge in late autumn can over-winter in citrus orchards in Jeju, Korea.

Effect of Silicate Supplemented to Medium on Rooting of Cutting and Growth of Chrysanthemum (배지에 첨가한 규산질 비료가 국화의 삽수 발근과 생육에 미치는 영향)

  • Moon, Ho Hwan;Bae, Min Ji;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • This experiment was carried out to examine the effect of silicate on the rooting of cuttings and growth of cut chrysanthemum. In the first experiment, cuttings of chrysanthemum 'Pink Pixie Time' were grown in a 3 L medium which was supplemented with silicate at 0, 30, 60, or 90 g for examination of its effect on rooting of cuttings. In the second experiment, chrysanthemum 'Backwang' was grown in medium supplemented with silicate at 0, 60, 90, 120 or 240 g per 20 L medium. In the first experiment, the promotional effect of silicate increased with increasing silicate concentration in the medium, resulting in increased length of shoot and root. However, root dry and fresh weights were not affected by silicate concentration in the medium. In the second experiment, number of branches, plant height, number of nodes, and stem diameter in the silicate-supplemented treatments were greater than those in the control. However, dry matter was not affected significantly by silicate concentration in the medium. Fresh weights of the leaf, stem and root in the silicate-supplemented treatments were greater than those in the control.

Increasing Root-mat Formation by Plant Growth Regulators in Machine Transplanting with Infant Seedling of Rice (생장조절제를 이용한 벼 기계이앙 어린모 맷트형성 촉진)

  • Kim, Je-Kyu;Kim, Young-Hyo;Lee, Moon-Hee;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.57-64
    • /
    • 1991
  • This experiment was conducted to elucidate the effect of plant growth regulators (PGR) on the root -mat formation of infant seedling (8- to 10-day-old seedling) of rice in machine transplanting. The rice seeds of Odaebyeo were socked in water with different concentrations of PGRs for 48 hours at room temperature. Seeding rate was 220 g per seed tray (30x60x3cm). Metalaxyl (25% wettable powder) was used for a fungicide. Generally, the metalaxyl-treated seeds markedly promoted the root growth of the rice seedling, while tetracy-cle, pachlobutrazol and NTN -821 reduced the seedling height and root length, and thickened the shoot diameter at higher concentation levels. Tetracycle decreased root length of the rice seedlings but increased root number per seedling, and root-mat formation was poor. Whereas, metalaxyl concentrations of 200 and 1,000 ppm markedly increased root length and number of root hairs without decreasing root number, thus root-mat formation was excellent. The optimum concentration of metalaxyl seed treatment to increase the root-mat formation of infant seedling of rice was about 200 ppm. Metalaxyl seed treatment could be advanced one to two days of the duration of root-mat formation compared with control.

  • PDF