• 제목/요약/키워드: Shoe structure

검색결과 46건 처리시간 0.025초

고속철도 제륜자 결함분석 및 제륜자 개발 (Failure Mode Analysis and Friction Material Development of the KTX tread Brake)

  • 백종길;구병춘;구정서
    • 한국철도학회논문집
    • /
    • 제14권2호
    • /
    • pp.109-115
    • /
    • 2011
  • 고속철도 KTX 차량의 답면제동은 전기제동이 작용하지 않는 저속에서 열차를 정거장의 정위치에 정차시킬 때 주로 사용되는데 그 동안 균열발생, 제륜자 키 탈락 등 잦은 고장이 발생하였다. 본 연구에서는 이러한 고장의 원인을 규명하고 각 고장에 대해 해결책을 제시하고 시험평가를 통하여 개선효과를 검증하였다. 제륜자 키와 캠의 강도향상과 제륜자 마찰재 지지판의 강도향상은 제륜자 마찰재의 균열발생을 약간 줄이는 효과는 있었다. 지지판의 강도향상, 구조개선과 함께 제륜자의 재질을 변경하였을 때 마찰재에는 균열이 거의 발생되지 않았다.

지진시에 교량의 탄성 받침을 표현하는 범용 연결 유한 요소 모델의 유도식 (Derivation of General Link Finite Element Equation representing Pad Shoe in Bridge under Earthquake)

  • 정대열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.226-233
    • /
    • 1999
  • When we numerically model the bridge under seismic condition, the full model combining the super-structure and the sub-structure is considered for the more accurate results than the separate model. In this case, the super-structure is connected with the sub-structure by the elastic pad shoe that is difficult to model, because it has the three translational elastic stiffness and the three rotational elastic stiffness. The two-node General Link element is derived in finite element equation representing such a pad shoe, and it is verified by comparing the one General Link element model with the corresponding three legacy spring element model. It is easy to model the pad shoe, if the General Link finite element is used. And the seismic analysis result of the bridge full model structure, which is modeled with the General Link element, has been compared with the one of the separate model structure. The present study gives. more conservative result than that of the separate model, which does not consider the dynamic behaviour of the sub-structure.

  • PDF

교량받침용 대형 Roller Shoe의 구름마찰특성에 관한 연구 (A Study on the Rolling Friction Characteristics of Large Scale Roller Shoe for Bridge Supporter)

  • 김영득;김재철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.660-663
    • /
    • 2001
  • There is a mechanical device between the superstructure and substructure of a bridge, which transmit vertical load of superstructure to the substructure and absorb horizontal displacement of super structure due to thermal, dynamic, load, etc. In order to meet two requirements at once, the structure of roller between plates is widely used, and this roller between plates is widely used, and this roller shoe system is known to have smaller horizontal movement resistance than any other type of bridge shoe. In this study, rolling friction resistance characteristics of roller-plate friction system is investigated according to roller dimension, vertical load, hardness and roughness of roller and plate. On the base of the results, the rolling friction resistance of large scale roller shoe is evaluated using model experiment.

  • PDF

플래시 발생 억제형 신발 밑창 금형 개발에 관한 연구 (A Study on the Development of Shoe Outsole Mold for Flash-less)

  • 허관도;여홍태;최영
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.103-108
    • /
    • 2005
  • In this study, to develop a flash-less mold for forming of shoe-outsole, experiments and forming analysis were carried out. In order to reduce the extra-materials, offset method and mass distribution method are used in the preform design. The vertical mold structure pressing the preform was introduced to produce a flash-less shoe-sole. To measure the contact status of parting surface of mold, the pressure film has been used. The guide-gutter system and the continuous pressing mold have been developed for the discharge of extra-materials and re-pressing. By the investigation, flash of shoe-outsole was considerably reduced.

Qualitative Analysis of Pressure Intensity and Center of Pressure Trajectory According to Shoe Type

  • Yi, Kyung-Ock
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.261-268
    • /
    • 2012
  • The purpose of this study was to qualitatively analyze pressure intensity and the center of pressure(COP) trajectory according to shoe type. Subjects were ten first-year female university students. The EMED-AT 25/D(Novel, Germany) was used to measure pressure intensity and COP trajectory. The COP Excursion Index(CPEI) was used for within subject test design. Independent variables were bare feet and six types of shoes. Dependent variables were center of pressure trajectory and pressure intensity. Barefeet and five toed shoes had a similar pressure intensity and COP trajectory. COP trajectory for all other shoe types showed a medial wobble at the heel. Pressure intensity for all other shoe types was related to the structure of the shoes. In conclusion, different shoe types can not only affect gait, but they can also influence foot deformities, pain, and dysfunction.

유한요소법을 이용한 기능성 신발 구조체의 개발 (Development of the Functional Shoe Apparatus using FEM)

  • 한규택
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.89-95
    • /
    • 2013
  • This study focused on the development on functional shoe apparatus so that the appropriate impact can be applied to the feet in order to improve the density of mineral bone at lower limbs. The model with structure proposed in this study had an effective stress about 20 to 100% higher by comparing that of the model without it among most of 15 bone extraction points. Though there is a limitation that the finite element analysis data from the human body model are not the value of mineral bone densities by measuring directly but the effective bone stresses against impact, the proposed structure is designed to influence the increase of bone mass and improve the density of mineral bone by effecting the improvement of the density of mineral bone actually.

플래시 발생 억제형 신발 중창 금형 개발에 관한 연구 (A Study on the Development of Shoe Midsole Mold for Flash-less)

  • 허관도;여홍태;최영
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.109-114
    • /
    • 2005
  • In this study, to develop a flash-less mold for forming of shoe-midsole, experiments and forming analysis were carried out. In order to reduce the extra-materials, the final preform has been modified by the experiment of pressure forming at the room temperature. To measure the contact status of parting surface of mold, the pressure film has been used. The midsole mold of the wedge structure type has been developed for the improvement of the contact status. The vertical pressing mold structure was introduced for the production of a flash-less midsole. By the investigation, flash of shoe-midsole was considerably reduced.

기능성 건강구두의 개발에 대한 연구 (A Study on the Development of Functional Health Shoe)

  • 김명웅;전광식
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 추계산학기술 심포지엄 및 학술대회 발표논문집
    • /
    • pp.196-200
    • /
    • 2001
  • 발은 두 가지의 기능을 가지고 있는데 첫째는 추진기능이고 다른 하나는 몸을 지탱하고 보호하는 기능이다. 그럼에도 불구하고 발의 중요성을 쉽게 잃어버릴 때가 있다. 발바닥에는 인체의 중요한 부위들이 축소되어 있어 발이 건강하면 몸 전체가 건강하다고 헤서 발은 제2외 심장이라고 한다. 발이 건강하려면 좋은 신발을 신어야 한다. 신발을 사용용도, 신체적인 조건, 외적조건에 따라 재료, 디자인, 라스트, 패턴, 젯법 등이 다양하다. 좋은 신발은 적합성, 신축성, 그리고 순응성이 있어야 한다. 건강한 신발을 만들기 위해서는 인간공학적이고 과학적인 근거를 가지고 설계하여 제조하여야 한다. 특히 최근에는 일의 능률을 높이기 위해 다 기능성 신발의 개발에 많은 관심을 가지고 있어 본 연구에서는 이를 위해 신발의 기능성에 대한 이론과 실험을 근거로 하여 건강한 구두를 개발코자 한다.

액셜 피스톤 펌프의 슈 홀드 스프링 설계 및 성능시험 (Design and Performance Test of the Shoe Holder Spring of the Axial Piston Pump)

  • 전영준;최진호;정희택;이상찬;김태일;김동우
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2228-2236
    • /
    • 2002
  • The axial piston pump by which the mechanical energy is converted into hydraulic energy has been widely used in a press, a injection molding machine and construction equipments due to the high specific power compared to the electric power system. In this paper, the one-piece shoe holder spring of the axial piston pump to simplify its structure and reduce this manufacturing cost was designed and tested. The finite element analyses using the 3-D shell element and contact element were performed to determine the thickness, width and initial angle of the shoe holder spring. Also, the compressive tests of the shoe holder spring were performed and their results were compared with those of the finite element analysis. Also, the performance and endurance limit of axial piston pump with the shoe holder spring were tested and evaluated.