• Title/Summary/Keyword: Shod gait

Search Result 3, Processing Time 0.016 seconds

Comparison of Barefoot and Shod Gait Cycle for Adult Women (성인 여성의 맨발 보행과 운동화 착용 보행 시 주기 비교)

  • Kim, In-Bae;Park, Tae-Sung;Kang, Jong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • The purpose of this study was to privide basic data for footwear development according to walking mechanics by comparing gait cycle difference between barefoot walking and walking shoes. The walking period was measured in 30 normal adult women with no foot deformity and abnormality. The first subject walked in sneakers and measured the cycle. And then, the subjects walked barefoot and the period was measured to obtain data. The data were taken form corresponding paired T-test. The results were as follows: In barefoot walking, the stance phase left side(p <.001), right side(p <.005), the loading response left side(p <.009), right side(p <.002) ), the pre-swing left side(p <.002), right side (p <.011), the double stance phase(p <.004) were increased and the mid-stance left side (p <.016), right side(p. 001), the swing phase left side(p<.001) was decreased. This suggests that barefoot walking increases the input of various senses of the foot, which makes stable walking possible. It is necessary to improve shoes based on the walking cycle in the future.

The Influence of Wedged Insoles on Lower Extremity Joints during Gait (경사진 안창이 보행시 하지관절에 미치는 영향)

  • Kwon, Min-Jeong;Choi, Hwa-Soon;Chung, Min-K.;Na, Seok-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Despite the widespread use of laterally wedged insoles for patients with knee osteoarthritis and medially wedged insoles for controlling rearfoot pronation, an understanding of the effects of wedged insoles was limited and sometimes controversial. The objective of this study was to evaluate the effect of wedged insoles on the kinematics and kinetics of normal gait. Ten male subjects without history of lower limb disorders were recruited. Each subject performed four gait cycles under each of seven conditions; shod with 5$^{\circ}$, 8$^{\circ}$ and 15$^{\circ}$, 8$^{\circ}$ and 15$^{\circ}$ laterally wedged insoles. In order to determine statistical differences among seven conditions, the measured temporal spatial variables, angular displacements, joint moments, and ground reaction forces were compared with a one-way analysis of variance. Some significant changes induced by wedged insoles were apparent in joint moments and ground reaction forces. The medially wedged insole increased the laterally directed ground reaction force and varus moments at the ankle force and varus moments at the ankle and the knee.

A Comparative Study on the Characteristics of Friction with/without shoes by Analyzing Bio-signals during walking (보행 시 생체신호분석을 통한 신발 착용 유무에 따른 마찰 특성 비교)

  • Oh, Seong-geun;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.59-66
    • /
    • 2018
  • The utilized coefficient of friction (UCOF) as a ratio of the shear force to the normal force on the ground during walking is used to identify the point at which slip is likely to occur. Shoe walking will change the utilized coefficient of friction by shoe design such as sole thickness and hardness, heel shape, and outsole pattern. In this study, subjects are 21 adults (10 female, 11 male, age: $25.2{\pm}2.3yrs$, height: $165.6{\pm}7.2cm$), analysis variables were walking speed, GRF, when the UCOF is maximal, and Tangent of CoP-CoM angle, and correlation analysis with the utilized friction coefficient (UCOF). As a result, First, for the shod walking the time point which UCOF is maximum about heel strike was faster and the magnitude was larger than for barefoot walking. Second, the correlation between the tangent of CoP-CoM and UCOF of right foot was higher at the left heel striking point (UCOF2_h) which occurred in the post propulsion phase than at the right heel striking point (UCOF1_h). This suggests that the right foot UCOF is related to the braking phase of left foot( which is the propulsion phase of right foot) rather than the braking phase of right foot.