• Title/Summary/Keyword: Shock tunnel

Search Result 156, Processing Time 0.031 seconds

Recommendations on dynamic pressure sensor placement for transonic wind tunnel tests

  • Yang, Michael Y.;Palodichuk, Michael T.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.497-513
    • /
    • 2019
  • A wind tunnel test was conducted that measured surface fluctuating pressures aft of a ramp at transonic speeds. Dynamic pressure test data was used to perform a study to determine best locations for streamwise sensor pairs for shocked and unshocked runs based on minimizing the error in root-mean-square acceleration response of the panel. For unshocked conditions, the upstream sensor is best placed at least 6.5 ramp heights downstream of the ramp, and the downstream sensor should be within 2 ramp heights from the upstream sensor. For shocked conditions, the upstream sensor should be between 1 and 7 ramp heights downstream of the shock, with the downstream sensor 2 to 3 ramp heights of the upstream sensor. The shock was found to prevent the passage coherent flow structures; therefore, it may be desired to use the shock to define the boundary of subzones for the purpose of loads definition. These recommendations should be generally applicable to a range of expansion corner geometries in transonic flow provided similar flow structures exist. The recommendations for shocked runs is more limited, relying on data from a single dataset with the shock located near the forward end of the region of interest.

Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction (경계층 유동의 흡입에 의한 수직충격파 진동저감)

  • Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

Investigation of Supersonic Combustion within the Model Scramjet Engine by Shock Tunnel Test (충격파 터널시험을 통한 스크램제트 엔진의 초음속 연소현상연구)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.307-311
    • /
    • 2008
  • Ground test of model Scramjet engine was performed with T4 free-piston shock tunnel at University of Queensland, Australia. Test condition of free stream was Mach 7.6 at 31 km altitude. With this condition, variation effects of fuel equivalence ratio, cavity, cowl setting were investigated. In the results, supersonic combustion or thermal choking was observed depending on the amount of fuel. Cavity and W-shape cowl showed early ignition and enhanced mixing respectively.

  • PDF

The Behavior of Shock Wave through a Circular Tunnel around Supersonic Cylinder using FVS Upwind Scheme (FVS를 이용한 터널을 통과하는 초음속 실린더 주위의 충격파 거동 해석)

  • Ko M. H.;Shin C. H.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.29-35
    • /
    • 1999
  • A two-dimensional Euler code based on flux vector splitting scheme has been developed to simulate the behavior of supersonic shock wave over the cylinder. AF+ADI scheme was used for time integration. The sliding multiblock technique was implemented to handle the relative motion of the moving cylinder and the stationary tunnel. The code is validated with a problem of subsonic flow around a Naca-0012 airfoil. The Computation results show complex phenomena of the propagation of shock waves and the reflection as expansion wave at tunnel exit.

  • PDF

Ground Test of Model SCRamjet Engine with Free-Piston Shock Tunnel

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok;Smart, Michael;Suraweera, Milinda
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.452-455
    • /
    • 2008
  • Model Scramjet engine is tested with T4 free-piston shock tunnel at University of Queensland, Australia. Basically, test condition is fixed as Mach 7.6 at 31 km altitude. With this condition, variation effects of fuel equivalence ratio, cavity, cowl setting and angle of attack were investigated. In the results, supersonic combustion was observed with low and middle fuel equivalence ratio. At high equivalence ratio, thermal choking was occurred due to the intensive reaction. Cavity and W-shape cowl showed early ignition and enhanced mixing respectively.

  • PDF

Effect of flow bleed on shock wave/boundary layer interaction (유동의 흡입이 충격파/경계층의 간섭현상에 미치는 영향)

  • Kim, Heuy-Dong;Matsus, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1273-1283
    • /
    • 1997
  • Experiments of shock wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer flow bleed on the interaction flow field in a straight tube. Two-dimensional slits were installed on the tube walls to bleed the turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled within the range of 11 per cent. The wall pressures were measured by the flush mounted transducers and Schlieren optical observations were made for almost all of the experiments. The results show that the boundary layer flow bleed reduces the multiple shock waves to a strong normal shock wave. For the design Mach number of 1.6, it was found that the normal shock wave at the position of the silt was resulted from the main flow choking due to the suction of the boundary layer flow.

High Speed Propulsion System Test Research Using a Shock Tunnel (충격파 터널을 이용한 고속추진기관 시험 연구)

  • Park, Gisu;Byun, Jongryul;Choi, Hojin;Jin, Yuin;Park, Chul;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.43-53
    • /
    • 2014
  • Shock tunnels are known to be capable of simulating flow-field environments of supersonic and hypersonic flights. They have been operated successfully world-wide for almost half a century. As a consequence of the strong interest in hypersonic vehicles in Korea, attention has been given on this type of facility and so an intermediate-sized shock tunnel has lately been built at KAIST. In the light of this, this paper presents our tunnel performance and some of the model scramjet test data. The freestream flow used in this work replicates a supersonic combustor environment for a Mach 5.7 flight speed.

An Experimental Study on Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 날개 유동에 관한 실험적 연구)

  • Lee, Dong-Won;Gwon, Sun-Beom;;Kim, Byeong-Ji;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.11-16
    • /
    • 2006
  • An experimental study of the transonic flows over NACA and double wedge airfoils was conducted with a shock tube. The configuration of test section with a slotted wall and chamber was designed and tested to minimize wall and reflected shock wave effects and use the shock tube as simple and less costly wind tunnel generating the relatively high Reynolds numbers transonic flow. Transonic airfoil flows at hot gas Mach numbers of 0.80~0.84, Reynolds number of about $1.2{\times}10^6$ on airfoil chord length and angles of attack of $0^{\circ}$ and $2^{\circ}$ were visualized with the shadowgraph method. The shock wave profiles on the airfoils were compared with the corresponding results from the conventional transonic wind tunnel tests. The experimental results showed that present shock tube exhibited the proper performance characteristics as transonic wind tunnel for tested Mach number range and airfoils.

Scramjet Experimental Techniques Using a Shock Tunnel (충격파 터널을 이용한 스크램제트 실험 기술)

  • Yang, Sungmo;Kim, Keunyeong;Chang, Eric Won Keun;Jin, Sangwook;Park, Gisu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.97-106
    • /
    • 2018
  • This paper summarizes the technical difficulties pertaining the double-compression ramp scramjet inlet model testing in a shock tunnel and their corresponding solutions. Four technical difficulties are identified: 1) test facility unstart, 2) flow disturbance and model damage due to the impact of diaphragm debris, 3) lack of fuel jet development due to multiple injection, and 4) short test time. After overcoming the identified technical difficulties, the improved results were confirmed through the results of shadowgraph images and shock tube end wall pressure.

Experimental Study of a Scramjet Engine Intake in a Storage Heater Type Hypersonic Wind Tunnel (축열식 가열기형 풍동을 이용한 스크램제트 엔진 흡입구 실험연구)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.463-466
    • /
    • 2010
  • A scramjet engine intake model was tested with a storage air heater type hypersonic wind tunnel. In test results, there is no large performance change with the variation of the sidewall configurations. In the isolator performance analysis, pressure distribution of oblique shock train and normal shock train was observed. Unstart limit of the model was also confirmed.

  • PDF