• 제목/요약/키워드: Shock tunnel

검색결과 156건 처리시간 0.024초

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

호주 UQ의 T4 Free Piston Shock Tunnel에서의 스크램제트 엔진 성능시험 기법 연구 (Research of the Scramjet Engine Performance Test Technique at T4 Free Piston Shock Tunnel in University of Queensland, Australia)

  • 이양지;강상훈;양수석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.267-270
    • /
    • 2007
  • 한국항공우주연구원은 호주 University of Queensland(UQ)와 2006년 10월 스크램제트 엔진 성능시험 계약을 체결하고, 2007년 6월 UQ의 T4 Free Piston shock tunnel에서 마하 7.6, 고도 31.2 km 조건에서 스크램제트 엔진의 지상 성능시험을 수행하였다. 본 논문에는 T4 충격파 터널의 구조 및 데이터 취득 기법에 대하여 정리하였다.

  • PDF

Overview of Flow Diagnosis in a Shock Tunnel

  • Kim, Ikhyun;Lee, Sungmin;Park, Gisu;Lee, Jong Kook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.425-435
    • /
    • 2017
  • In this work, an overview of flow diagnosis in a shock tunnel is made by means of using established techniques that are easy to setup, economical to arrange, and simple to measure. One flow condition was considered having Mach number of 6 at the nozzle-exit, regarded as freestream. Measured aerothermodynamic data such as shock wave speed, wall static and total pressures, surface heat flux, and shock stand-off distance ahead of test model showed good agreement with calculation. This study shows an overall procedure of flow diagnosis in a shock tunnel in a single manuscript. Outcomes are thought to be useful in the field of education and also in a preliminary stage of high-speed vehicle design and tests, that need to be performed within a short time with decent accuracy.

네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구 (Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel)

  • 박상훈;노장훈;김진
    • 터널과지하공간
    • /
    • 제27권3호
    • /
    • pp.132-145
    • /
    • 2017
  • 과거 도로터널 환기에 있어서 충격 손실은 설계에 반영되지 않았지만, 터널 내 네트워크형 구조로 인해 분기 합류부가 존재하는 복층 도로터널에서는 충격 손실에 의한 압력 손실이 크게 발생할 것이다. 이에 본 연구에서는 네트워크형 구조를 가지는 복층 도로터널 최적 환기 설계를 위하여 분기 합류 지점에서 발생하는 충격 손실에 대한 3D 전산유체역학(CFD) 수치해석 연구를 수행한다. 이를 위해 복층 도로터널 표준단면을 적용한 실제 스케일 모델을 활용하여 전산 유체 역학을 수행하였고 다양한 각도와 차도폭에 대한 충격 손실 계수를 도출하여 기존의 설계 값과 비교 분석하였다. 연구 결과, 분기 구간에서는 30도의 분류 각도를 가진 모델의 충격 손실 계수가 높게 측정되었고, 합류 구간에서는 2차선으로 설계된 모델의 충격 손실 계수가 낮게 측정됨을 확인할 수 있었다. 따라서 분기 합류 각도와 차도폭이 충격 손실 산정에 있어서 중요한 설계 요소가 될 수 있으므로 환기기 용량 산정에 있어서 정확한 설계 인자를 제시할 것으로 판단된다. 본 연구는 3D 전산유체역학(CFD)를 활용하여 확폭 교차 유 무에 따른 분기 합류 지점에서의 충격 손실 계수를 도출하고, ASHRAE 설계 값과 결과를 비교 분석하였다. 확폭 구간이 반영되지 않은 모델은 ASHRAE 값에 비해 최대 3배의 충격 손실 값을 확인하였고, 확폭 구간이 반영된 모델은 최대 2배의 값을 확인할 수 있었다.

고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(2)-압축파의 감쇠와 비선형효과- (Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(II)-attenuation and Nonlinear Effect of Compression Waves-)

  • 김희동;송미일태
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1972-1981
    • /
    • 1995
  • As a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. The impulsive noise is closely related to the pressure gradient of the compression wave propagating the tunnel. In order to investigate the characteristics of the compression waves, in the present study an experiment was made using a shock tube. The results show that the strength of a compression wave decreases with the distance from the tunnel entrance and the nonlinear effect of compression wave appears to be significant if strength of the initial compression wave is greater than 7 kPa. Furthermore if the wave pattern is known, attenuation of the compression wave propagating in a tunnel can be reasonably predicted by a theoretical equation considering viscous action and heat transfer in boundary layer.

격막 파열과 충격파 터널 시험 시간에 대한 수치 연구 (Effect of a Diaphragm Opening Process on Flow Condition in Shock Tunnel)

  • 김세환
    • 한국추진공학회지
    • /
    • 제25권6호
    • /
    • pp.20-28
    • /
    • 2021
  • 극초음속 유동 시험에 활용되고 있는 충격파 터널 등은 원하는 시험 조건을 얻기 위해 격막의 파열 압력비를 맞추어 운용한다. 주로 금속 재질로 이루어진 격막은 정확한 압력비를 맞추기 위해 특정 형태로 가공하거나 강제 파열 장치를 사용하여 개방한다. 격막의 개방 과정은 수백 microsecond 동안 파열과 변형을 통해 이루어지는데, 동일한 압력비에서도 개방 정도와 개방 소요 시간에 따라 시험 조건이 달라질 수 있을 것으로 예상된다. 본 연구에서는 격막의 두께 및 재질 차이를 반영할 수 있는 파열모델을 적용하여 수치 해석을 수행하고 충격파의 형성과 정체 조건의 특성에 대해 살펴보았다. 격막 파열로 인해 생성된 충격파의 속도는 격막 개방 속도에 비례하였으며, 격막의 최종 개폐율 및 소요 시간에 따라 저압관 끝단에 형성되는 정체 압력과 시험 시간에 차이가 나타나는 것을 확인할 수 있었다.

건국대학교 충격파 풍동의 성능 해석에 관한 수치적 연구 (A Numerical Study on the Performance Analysis of Shock Tunnel)

  • 탁정수;변영환;이재우;이장연;허철준;최병철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.39-44
    • /
    • 2000
  • Two-dimensional Navier-Stokes codes are used to simulate the shock tunnel in Konkuk university. In order to design experiments in impulse facilities properly and to interpret data from such facilities, it is necessary to understand how the flow approaches steady state. This is done by determining the transient flow field and flow establishment time around a given model. This will be accomplished by developing appropriate CFD codes which solve the Navier-Stokes equations, and simulating the starting process and resulting unsteady viscous flow phenomena. The starting process in a shock tunnel consists of multiple shock interactions and contact discontinuities, which are difficult to solve with the classical shock capturing schemes. A recently developed high resolution scheme is adapted for resolving the unsteady phenomena of those multiple shock interactions and contact surfaces during the starting process. The bifurcation phenomenon due to the interactions of the reflected shock from the end of the shock tube with the boundary layer generated by the incident shock becomes of particular interest. By comparing with the experiment results, the accuracy of the numerical analysis is validated and it is demonstrated that the properties which can hardly be obtained through the experiment can be estimated.

  • PDF

두 연속 터널을 전파하는 압축파의 실험적 연구 (Experimental study of compression waves propagating into two-continuous tunnels)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1294-1302
    • /
    • 1997
  • For the purpose of investigating the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, experiments were carried out using a shock tube with an open end. A great deal of experimental data were obtained and explored to analyze the peak pressures and maximum pressure gradients in the pressure waves. The effects of the distance and cross-sectional area ratio between two-continuous tunnels on the characteristics of the pressure waves were investigated. The peak pressure inside the second tunnel decreases for the distance and cross-sectional area ratio between two tunnels to increase. Also the peak pressure and maximum pressure gradient of the pressure wave inside the second tunnel increase as the maximum pressure gradient of initial compression wave increases.

고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(1) - 압축파의 특성에 대하여 - (Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(1) - On the characteristics of Compression Wave -)

  • 김희동
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2686-2697
    • /
    • 1994
  • When a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. In order to estimate the magnitudes of the noises and to effectively minimize them, the characteristics of the compression wave propagating in a tunnel must be understood. In the present paper, the experimental and analytical investigations on the attenuation and distortion of the propagating compression waves were carried out using a model tunnel. This facility is a kind of open-ended shock tube with a fast-opening gate valve instead of a general diaphragm. One-dimensional flow model employed in the present study could appropriately predict the strength of the compression wave, Mach number and flow velocity induced by the compression wave. The experimental results show that the strength of a compression wave decreases with the distance from the tunnel entrance. The decreasing rate of the wave strength and pressure gradient in the wave is strongly dependent on the strength of the initial compression wave at the tunnel entrance.

급축소관을 전파하는 압축파에 관한 이론적 연구 (Theoretical study on compression wave propagating in a sudden reduction duct)

  • 김희동;김태호
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.89-98
    • /
    • 1997
  • Compression waves propagating in a high speed railway tunnel impose large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations can cause ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, a steady theory of Chester-Chisnell- Whitham was applied to a simple shock tube with a sudden cross-sectional area reduction to model trains inside the tunnel. The results of the present theoretical analysis were compared with the experiments of the shock tube. The results show that the reflected compression wave from the model becomes stronger as the strength of incident compression wave and the blockage ratio increase. However, the compression wave passing through the model is not strongly dependent on the blockage ratio. The theoretical results are in good agreement with the experiments.