• Title/Summary/Keyword: Shock stand-off distance

Search Result 8, Processing Time 0.025 seconds

CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE IN NONEQUILIBRIUM HYPERSONIC FLOW (비평형 극음속 유동에서 구에 대한 충격파 이탈거리 계산)

  • Furudate, M. Ahn
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.69-74
    • /
    • 2012
  • Hypersonic flowfields over a sphere is calculated by using a nonequilibrium flow solver. The flow solver features a two-temperature model and finite rate chemical reaction models to describe nonequilibrium thermochemical processes. For the purpose of validation, the calculated shock stand-off distance is compared with the experimental data which is measured in a ballistic range facility. The present nonequilibrium calculation well reproduced the experimental shock stand-off distance in the cases where the experimental flowfields are expected to be nearly equilibrium, as well as in the cases to be nonequilibrium flowfields in the velocity range 4000 to 5500 m/s.

Comparison between observation and theory for the stand-off distance ratios of CMEs and their associated ICMEs

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Jin-Yi;Jang, Soojeong;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.81.3-81.3
    • /
    • 2016
  • We examine whether the observational stand-off distance ratios of CMEs and their associated ICMEs could be explained by theoretical model or not. For this, we select 16 CME-ICME pairs from September 2009 to October 2012 with the following conditions: (1) limb CMEs by SOHO and their associated ICMEs by twin STEREO spacecraft and vice versa when both spacecraft were roughly in quadrature; (2) the faint structure ahead of a limb CME is well identified; and (3) its associated ICME clearly has a sheath structure. We determine the observational stand-off distance ratios of the CMEs by using brightness profiles from LASCO-C2 (or SECCHI-COR2) observations and those of the ICMEs by solar wind data from STEREO-IMPACT/PLASTIC (or OMNI database) observations. We also determine the theoretical stand-off distance ratios of the CME-ICME pairs using semi-empirical relationship based on the bow shock theory. We find the following results. (1) Observational CME stand-off distance ratio decreases with increasing Mach number at the Mach numbers between 2 and 6. This tendency is consistent with the results from the semi-empirical relationship. (2) The observational stand-off distance ratios of several ICMEs can be explained by the relationship.

  • PDF

COMPUTATIONAL INVESTIGATION OF THE HIGH TEMPERATURE REACTING GAS EFFECTS ON RE-ENTRY VEHICLE FLOWFIELDS (재진입 비행체 외부 열유동장의 고온반응기체 효과에 관한 전산해석)

  • Kang, E.J.;Kim, J.Y.;Park, J.H.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Aerothermodynamic characteristics of re-entry vehicles in hypersonic speed regimes are investigated by applying CFD methods based on the Navier-Stokes-Fourier equations. A special emphasis is placed on the effects of high temperature chemically reacting gases on shock stand-off distance and thermal characteristics of the flowfields. A ten species model is used for describing the kinetic mechanism for high temperature air. In particular, the hypersonic flows around a cylinder are computed with and without chemically reacting effects. It is shown that, when the chemically reacting effects are taken into account, the shock stand-off distance and temperature are significantly reduced.

Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion (주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF

Overview of Flow Diagnosis in a Shock Tunnel

  • Kim, Ikhyun;Lee, Sungmin;Park, Gisu;Lee, Jong Kook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.425-435
    • /
    • 2017
  • In this work, an overview of flow diagnosis in a shock tunnel is made by means of using established techniques that are easy to setup, economical to arrange, and simple to measure. One flow condition was considered having Mach number of 6 at the nozzle-exit, regarded as freestream. Measured aerothermodynamic data such as shock wave speed, wall static and total pressures, surface heat flux, and shock stand-off distance ahead of test model showed good agreement with calculation. This study shows an overall procedure of flow diagnosis in a shock tunnel in a single manuscript. Outcomes are thought to be useful in the field of education and also in a preliminary stage of high-speed vehicle design and tests, that need to be performed within a short time with decent accuracy.

Shock-Resistance Responses of Frigate Equipments by Underwater Explosion

  • Kim, Hyunwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.161-167
    • /
    • 2022
  • Three-dimensional finite element analysis (3D-FEA) models have been used to evaluate the shock-resistance responses of various equipments, including armaments mounted on a warship caused by underwater explosion (UNDEX). This paper aims to check the possibility of using one-dimensional (1D) FEA models for the shock-resistance responses. A frigate was chosen for the evaluation of the shock-resistance responses by the UNDEX. The frigate was divided into the thirteen discrete segments along the length of the ship. The 1D Timoshenko beam elements were used to model the frigate. The explosive charge mass and the stand-off distance were determined based on the ship length and the keel shock factor (KSF), respectively. The UNDEX pressure fields were generated using the Geers-Hunter doubly asymptotic model. The pseudo-velocity shock response spectrum (PVSS) for the 1D-FEA model (1D-PVSS) was calculated using the acceleration history at a concerned equipment position where the digital recursive filtering algorithm was used. The 1D-PVSS was compared with the 3D-PVSS that was taken from a reference, and a relatively good agreement was found. In addition, the 1D-PVSS was compared with the design criteria specified by the German Federal Armed forces, which is called the BV043. The 1D-PVSS was proven to be relatively reasonable, reducing the computing cost dramatically.

Experimental Study on the Line Shock Wave in Explosive Welding (폭발용접에서 선형 충격파에 관한 실험적 연구)

  • 김청균;문정기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1108-1114
    • /
    • 1992
  • In this paper results from experimental studies on the line wave detonation of explosive welding were presented. Using the ultra high speed comera, the ling wave generation during the bonding, process of composite materials was observed with an equilateral triangle lens. Experimental results confirmed the line wave formation of the shock front. And the results indicated the effectiveness of the ling wave detonation method in the explosive welding of similar or dissimilar metals.

High-Altitude Environment Simulation of Space Launch Vehicle in a Ground-Test Facility (지상시험장비를 통한 우주발사체 고공환경모사 기법 연구)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.914-921
    • /
    • 2017
  • The experimental research on a high-altitude environment simulation of space launch vehicle is important for securing independent technologies with launching space vehicles and completing missions. This study selected an altitude of 65 km for the experiment environment where it exceeded Mach number of 6 after the launch of Korean Space Launch Vehicle(KSLV-II). Shock tunnel was used to replicate the flight condition. After flow establishment, in order to confirm aerodynamic characteristics and normal and oblique shockwaves, the flow verification was carried out by measuring stagnation pressure and heat flux of a forebody model, and shockwave stand-off distance of a hemispherical model. In addition, a shock-free technique to recover free-stream condition has been developed and verified. From the results of the three verification tests, it was confirmed that the flow was replicated with the error of about ${\pm}3%$. The error between the slope angle of inclined shockwave of the scaled down transition section model using the shock-free shape and the slope angle of the horizontal plate model, and between the theoretical and the experimental value of the static pressure of the model were confirmed to be 2% and 1%, respectively. As a result, the efficiency of the shockwave cancellation technique has been verified.