• 제목/요약/키워드: Shock of Loss

검색결과 211건 처리시간 0.026초

Effects of the Low Reynolds Number on the Loss Characteristics in a Transonic Axial Compressor

  • Choi, Min-Suk;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.202-212
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the loss characteristics in a transonic axial compressor, Rotor67. As a gas turbine becomes smaller in size and it is operated at high altitude, the operating condition frequently lies at low Reynolds number. It is generally known that wall boundary layers are thickened and a large separation occurs on the blade surface in axial turbomachinery as the Reynolds number decreases. In this study, it was found that the large viscosity did not affect on the bow shock at the leading edge but significantly did on the location and the intensity of the passage shock. The passage shock moved upstream towards leading edge and its intensity decreased at the low Reynolds number. This change had large effects on the performance as well as the internal flows such as the pressure distribution on the blade surface, tip leakage flow and separation. The total pressure rise and the adiabatic efficiency decreased about 3% individually at the same normalized mass flow rate at the low Reynolds number. In order to analyze this performance drop caused by the low Reynolds number, the total pressure loss was scrutinized through major loss categories such as profile loss, tip leakage loss, endwall loss and shock loss.

  • PDF

네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구 (Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel)

  • 박상훈;노장훈;김진
    • 터널과지하공간
    • /
    • 제27권3호
    • /
    • pp.132-145
    • /
    • 2017
  • 과거 도로터널 환기에 있어서 충격 손실은 설계에 반영되지 않았지만, 터널 내 네트워크형 구조로 인해 분기 합류부가 존재하는 복층 도로터널에서는 충격 손실에 의한 압력 손실이 크게 발생할 것이다. 이에 본 연구에서는 네트워크형 구조를 가지는 복층 도로터널 최적 환기 설계를 위하여 분기 합류 지점에서 발생하는 충격 손실에 대한 3D 전산유체역학(CFD) 수치해석 연구를 수행한다. 이를 위해 복층 도로터널 표준단면을 적용한 실제 스케일 모델을 활용하여 전산 유체 역학을 수행하였고 다양한 각도와 차도폭에 대한 충격 손실 계수를 도출하여 기존의 설계 값과 비교 분석하였다. 연구 결과, 분기 구간에서는 30도의 분류 각도를 가진 모델의 충격 손실 계수가 높게 측정되었고, 합류 구간에서는 2차선으로 설계된 모델의 충격 손실 계수가 낮게 측정됨을 확인할 수 있었다. 따라서 분기 합류 각도와 차도폭이 충격 손실 산정에 있어서 중요한 설계 요소가 될 수 있으므로 환기기 용량 산정에 있어서 정확한 설계 인자를 제시할 것으로 판단된다. 본 연구는 3D 전산유체역학(CFD)를 활용하여 확폭 교차 유 무에 따른 분기 합류 지점에서의 충격 손실 계수를 도출하고, ASHRAE 설계 값과 결과를 비교 분석하였다. 확폭 구간이 반영되지 않은 모델은 ASHRAE 값에 비해 최대 3배의 충격 손실 값을 확인하였고, 확폭 구간이 반영된 모델은 최대 2배의 값을 확인할 수 있었다.

Differential expression of heat shock protein 90, 70, 60 in chicken muscles postmortem and its relationship with meat quality

  • Zhang, Muhan;Wang, Daoying;Geng, Zhiming;Sun, Chong;Bian, Huan;Xu, Weimin;Zhu, Yongzhi;Li, Pengpeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.94-99
    • /
    • 2017
  • Objective: The aim of this study was to investigate the expression of heat shock protein (HSP) 90, 70, and 60 in chicken muscles and their possible relationship with quality traits of meat. Methods: The breast muscles from one hundred broiler chickens were analyzed for drip loss and other quality parameters, and the levels of heat shock protein (HSP) 90, 70, and 60 were determined by immunoblots. Results: Based on the data, chicken breast muscles were segregated into low (drip loss${\leq}5%$), intermediate (5%${\geq}9.5$) drip loss groups. The expression of HSP90 and HSP60 were significantly lower in the high drip loss group compared to that in the low and intermediate drip loss group (p<0.05), while HSP70 was equivalent in abundance in all groups (p>0.05). Conclusion: Results of this study suggests that higher levels of HSP90 and HSP60 may be advantageous for maintenance of cell function and reduction of water loss, and they could act as potential indicator for better water holding capacity of meat.

소형차 전용 복층터널 분기부에서의 충격손실 계수 결정 연구 (A Study on the Determination of Shock Loss Coefficient on the Branch in the Double-deck Road Tunnel for Small Car)

  • 노장훈;이승준;김진
    • 터널과지하공간
    • /
    • 제27권1호
    • /
    • pp.50-57
    • /
    • 2017
  • 본 연구는 네트워크형 복층터널의 환기설계를 위하여 분기부지점에서 발생할 수 있는 충격손실에 대한 실험연구이다. 충격손실양을 결정할 수 있는 충격손실계수는 현재까지 종횡비가 일정한 원형이나 사각단면에 관한 설계값 및 이론식만이 존재하고 있다. 하지만 현재 국내에서 검토중인 복층터널이 종횡비가 약 1:3정도로 층고가 낮은 소형차 전용도로이기 때문에 본 조건에 맞는 충격손실계수의 제시가 필요하다. 이를 위하여 Reynolds 상사법칙이 적용된 약 1:23 스케일의 실험모델을 제작하여 큰 종횡비에 따른 분기부 지점 충격손실계수를 측정하였다. 연구 결과 분기부가 존재할 때 직선구간에 작용하는 충격손실 계수 와 분기부에서 작용하는 충격손실 계수 이 선행연구 되었던 설계값 및 이론식보다 2~3배 높게 측정되는 것을 확인하였다. 즉, 큰 종횡비가 충격손실계수에 미치는 영향이 크다는 것을 확인함에 따라서 네트워크형 복층터널의 환기설계 시 보다 정확한 설계값을 제시할 수 있을 것으로 기대한다.

과도한 출혈을 동반한 다발성 안면부 외상 환자의 치험례 (MULTIPLE FACIAL TRAUMA PATIENT ACCOMPANIED WITH SEVERE BLEEDING: REPORT OF A CASE)

  • 오성섭;유대진;김일규;최진호;김형돈;오남식;황홍준
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제21권1호
    • /
    • pp.65-68
    • /
    • 1999
  • Multiple facial trauma patient should be carefully treated because of severe bleeding on extraoral and intraoral wound, possibilty of airway obstruction and hypovolemic shock. Hypovolemic shock may be divided to hemorrhagic shock and non-hemorrhagic shock. Also hemorrhagic shock is divided to mild, moderate and severe shock according to the degree of blood volume depletion. Mild shock occurs in blood loss of less than 20% of blood volume and moderate shock does in blood loss of 20-40% of blood volume. And Severe shock occurs in blood loss of more than 40% of blood volume. The goal of emergency care of trauma patient is that respiration and perfusion should be recovered to satisfactory level and that normal vital sign is maintained. We reported the case of multiple facial trauma patient with severe bleeding and hopovolemic shock and metabolic acidosis who was treated with adequate supply of fluid transfusion, intubation, tracheostomy and emergency operation.

  • PDF

Porphyromonas gingivalis 열충격 단백으로 면역한 백서에서의 치조골 파괴의 감소 (Reduced alveolar bone loss in rats immunized with Porphyromonas gingivalis heat shock protein)

  • 이니나;이주연;최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제33권4호
    • /
    • pp.555-562
    • /
    • 2003
  • The present study has been performed to evaluate Porphyromonas gingivalis (P.gingivalis) heat shock protein(HSP)60 as a candidate vaccine to inhibit multiple bacteria-induced alveolar bone loss. Rats were immunized with P.gingivalis HSP60 and experimental alveolar bone loss was induced by infection with multiple periodonto -pathogenic bacteria. Post-immune rat anti-P.gingivalis HSP IgG levels were significantly elevated and have demonstrated highly significant inverse relationship with the amount of alveolar bone loss induced by multiple bacteria. Results from PCR detection of subgingival bacterial plaque indicated that the vaccine successfully eradicated the multiple pathogenic species. We concluded that P.gingivalis HSP60 could potentially be developed as a vaccine to inhibit periodontal disease induced by multiple pathogenic bacteria.

샌드위치 구조를 가지는 복합재의 손실계수 향상을 위한 설계 (Design for Improving the Loss Factor of Composite with Sandwich Structure)

  • 이창민;전관수;강동석;김병준;김종훈;강명환;서영수
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.235-241
    • /
    • 2016
  • Underwater weapon system is required to structurally strong material, since as it is directly exposed to external shock. It should also be using the lightweight material in order to take advantage of buoyancy. Composite materials meet these requirements simultaneously. Particularly in the case of submarine, composite materials are widely used. It is important to have a high strength enough to be able to withstand external shock, but it is also important to attenuate it. In a method for the shock damping, viscoelastic damping materials are inserted between the high strength composite material as a sandwich structure. Shock attenuation can be evaluated in the loss factor. In ASTM(American Society of Testing Materials), evaluation method of the loss factor of cantilever specimens is specified. In this paper, mode tests of the cantilever are performed by the ASTM standard, in order to calculate the loss factor of the viscoelastic damping material by the specified expression. Further, for verifying of the calculated loss factor, mode test of compound beams is carried out. In addition, the characteristics of the material were analyzed the effect on the loss factor.

혼종모형을 이용한 신규간호사의 현실충격에 대한 개념분석 (A Concept Analysis on Reality Shock in Newly Graduated Nurses Using the Hybrid Model)

  • 신경미;김은영
    • 한국직업건강간호학회지
    • /
    • 제26권1호
    • /
    • pp.19-29
    • /
    • 2017
  • Purpose: The purpose of this study was to define and clarify the concept of reality shock in new graduated nurses. Methods: The hybrid model was used to develop the concept of reality shock. The model included a field study. The participants were 9 newly graduated nurses with a nursing career spanning less than a year. Results: The reality shock in newly graduated nurses was identified to have three dimensions and seven attributes. Specifically: 1) the dimension of performance included two attributes (conflict between theory and practice, and being overwhelmed by the workload), 2) the dimension of relationship included three attributes (loss of support, embarrassment from interference, and relational withdrawal), 3) the dimension of expectations included two attributes(value confusions and incongruity in personal life). Conclusion: Newly graduated nurses' reality shock was defined as a state of incongruence in their entire life that the new nurses experienced owing to value confusions that occurred due to the conflicts between theory and practice in an unfamiliar work environment, getting overwhelmed by the workload, and withdrawing establishing relationships with others due to the loss of support and excessive interference. These findings could help develop intervention strategies to decrease reality shock in newly graduated nurses.

DIFFUSIVE SHOCK ACCELERATION BY MULTIPLE WEAK SHOCKS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제54권3호
    • /
    • pp.103-112
    • /
    • 2021
  • The intracluster medium (ICM) is expected to experience on average about three passages of weak shocks with low sonic Mach numbers, M ≲ 3, during the formation of galaxy clusters. Both protons and electrons could be accelerated to become high energy cosmic rays (CRs) at such ICM shocks via diffusive shock acceleration (DSA). We examine the effects of DSA by multiple shocks on the spectrum of accelerated CRs by including in situ injection/acceleration at each shock, followed by repeated re-acceleration at successive shocks in the test-particle regime. For simplicity, the accelerated particles are assumed to undergo adiabatic decompression without energy loss and escape from the system, before they encounter subsequent shocks. We show that in general the CR spectrum is flattened by multiple shock passages, compared to a single episode of DSA, and that the acceleration efficiency increases with successive shock passages. However, the decompression due to the expansion of shocks into the cluster outskirts may reduce the amplification and flattening of the CR spectrum by multiple shock passages. The final CR spectrum behind the last shock is determined by the accumulated effects of repeated re-acceleration by all previous shocks, but it is relatively insensitive to the ordering of the shock Mach numbers. Thus multiple passages of shocks may cause the slope of the CR spectrum to deviate from the canonical DSA power-law slope of the current shock.

초음속 이젝터 디퓨져 시스템에서의 충격파 발생기 응용 (Application of Shock Generator to Supersonic Ejector Diffuser System)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.200-203
    • /
    • 2011
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for high altitude testing (HAT) of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser (SED). This paper aims at the improvement in HAT facility by focusing attention on the vertical firing rocket test stand with shock generators. Shock generators are mounted inside the SED for improving the pressure recovery. The results clearly showed that the performance of the ejector-diffuser system was improved with the addition of shock generators. The improvement comes in the form of reduction of the starting pressure ratio and the vertical height of test stand. It is also shown that shock generators are useful in reducing the total pressure loss in the SED.

  • PDF