• Title/Summary/Keyword: Shock loss coefficient

Search Result 10, Processing Time 0.022 seconds

A Study on the Determination of Shock Loss Coefficient on the Branch in the Double-deck Road Tunnel for Small Car (소형차 전용 복층터널 분기부에서의 충격손실 계수 결정 연구)

  • Rho, Jang-hoon;Lee, Seung-jun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • In this study, the experiment for determining shock loss at the branch is conducted for the design of network double-deck road tunnel ventilation. The shock loss coefficient that determines the quantity of shock loss has been considered only regarding the constant aspect ratio of circular or rectangular section. However the suggestion of shock loss coefficient is needed since the aspect ratio of double-deck road tunnel for small vehicle is considered around 1:3 with the low height in Korea. The experiment model was made with the scale of around 1:23 applying Reynolds similarity law, so that the shock loss coefficient on the branch of the large aspect ratio was measured. The result of the study showed that shock loss coefficients of both split branch and straight branch were measured two to three times higher than those calculated from the theoretical equation or design values of previous studies. Therefore the study resulted the effect of large aspect ratio on shock loss coefficient was huge, and it is expected that precise design value can be suggested for the design of network double-deck tunnel ventilation.

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

A Numerical Analysis on the Determination of Shock Loss Coefficient at Flared Intersection of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 확폭구간에서의 충격손실 계수 결정을 위한 수치해석 연구)

  • Park, Yo Han;Lee, Seung Jun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.111-124
    • /
    • 2018
  • The purpose of this study is to analyze ventilation design factor for network-type double-deck road tunnel that have been developed actively around the world. A numerical analysis was carried out through computational fluid dynamics (CFD) to derive shock loss coefficient that occurs due to the change in cross sectional area at both merging section and diverging section. The model used for the numerical analysis is real-scale model and the reliability of the result is secured by comparing with the coefficient of the previous studies. As a result of this study, shock loss coefficient was calculated depending on the change in cross-sectional area ratio and was higher than the result of previous studies in case of both merging section and diverging section. It is considered that the characteristics of the geometrical structure of network-type double-deck road tunnel have a great impact on shock loss coefficient. Therefore, the result of this study is expected to be helpful for more accurate ventilation design of network-type double-deck road tunnel.

Loss Analysis by Impeller Blade Angle in the S-Curve Region of Low Specific Speed Pump Turbine

  • Ujjwal Shrestha;Young-Do Choi
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2024
  • A pump turbine is a technically matured option for energy production and storage systems. At the off-design operating range, the pump turbine succumbed to flow instabilities, which correlated with the pump turbine geometry. A low specific speed pump turbine was designed and modified according to the impeller blade angle. Reynolds-Average Navier-Stokes is carried out with a shear stress transport turbulence model to evaluate the detailed flow characteristics in the pump turbine. The impeller blade inlet angle (𝛽1) and outlet angle (𝛽2) are used to evaluate hydraulic loss in the pump turbine. When 𝛽1 changed from low to high value, the maximum efficiency is increased by 4.75% in turbine mode. The S-Curve inclination is reduced by 8% and 42% for changes in 𝛽1 and 𝛽2 from low to high values, respectively. At α = 21°, the shock loss coefficient (𝜁s) is reduced by 16% and 19% with increases of 𝛽1 and 𝛽2 from low to high values, respectively. When 𝛽1 and 𝛽2 values increased from low to high, the impeller friction coefficient (𝜁f) increased and decreased by 20% and 8%, respectively. Hence, the high 𝛽2 effectively reduced the loss coefficient and S-Curve inclination.

Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.357-364
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. Case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several different jet flow conditions, angle of attacks, circumferential jet locations, and spouting jet angles. For the several different jet flow conditions, which include the jet pressure, the jet Mach number, and the corresponding jet mass flow rate, the results show that the normal force coefficient is almost proportional to the jet thrust but the moment coefficient is not. Distinctly different flow phenomena can be noticed as the pressure ratio and the jet Mach number increase. By investigating the angle of attack effect to the normal force and the pitching moment, it has been identified that the normal force and the pitching moment show nonlinearity with respect to the angle of attack. From the detailed flow field analyses with respect to the jet flow conditions and the angle of attacks, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, the normal force and the pitching moment characteristics of the missile have been identified by comparing different circumferential jet locations and spouting jet angles.

  • PDF

An Investigation on the Torque Converter Characteristics at Various Operating Conditions (작동 조건 변화에 대한 토크 컨버터의 성능 특성 분석)

  • Jang, Wook-Jin;Lee, Chin-Won;Lim, Won-Sik;Park, Yeong-Il;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.678-683
    • /
    • 2000
  • The one-dimensional performance model of a torque converter has been widely used to analyze and predict the performance and dynamic behavior of a torque converter. But this model doesn't include the information of the operating fluid properties. Therefore, to precisely predict dynamic performance of a torque converter, the effect of operating conditions must be considered through experimental coefficients such as friction loss coefficient and shock loss coefficient. And these coefficients cannot be achieved without experiments or internal flow analysis. In this study, the effects of varying material properties of operating fluid according to various operating temperatures are clarified with flow analysis of a torque converter. And these results are verified by comparing with those of performance experiment.

  • PDF

Influences of Mach Number and Flow Incidence on Aerodynamic Losses of Steam Turbine Blade

  • Yoo, Seok-Jae;Ng, Wing Fai Ng
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.456-465
    • /
    • 2000
  • An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles ($-34^{\circ}\;to\;26^{\circ}$) and exit Mach numbers (0.6 and 1.15). Measurements included downstream Pitot probe traverses, upstream total pressure, and end wall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions ($M_2<0.9$). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it' s believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface.

  • PDF

The effect of wear on the damage of slitting knife (Slitting Knife의 손상에 미치는 마모의 영향)

  • Nam, Ki-Woo;Kim, Cheol-Soo;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.5-11
    • /
    • 2016
  • This study analyzed the damage to a slitting knife after cutting steel sheets. Damages to the structure were observed and wear tests were conducted. In addition, the degradation on the damaged and undamaged parts was compared with a micro Vickers hardness test. Weibull statistical analysis was carried out in order to evaluate the reliability of the micro Vickers hardness measured data. Spalling of the edge portion occurred by degradation during use over a long period. Rough parts in the specimens were caused by damage because the slitting knife was used for 1 year. The friction coefficient and wear loss at the damaged parts of the knife edge were slightly larger from shock due to repetitive cutting operation. The micro Vickers hardness followed a two-parameter Weibull probability distribution.

Numerical Analysis of Incompressible and Compressible Flow Around a Butterfly Valve (버터플라이 벨브 주위의 비압축성 및 압축성유동 특성에 대한 수치해석)

  • 이종욱;이두환;최윤호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.26-33
    • /
    • 2002
  • In this paper, incompressible and compressible flow characteristics around the butterfly valve have been investigated. In order to simplify the problem, a flat disk valve with various valve disk angles and pressure ratios is considered in the present calculations. It was found that as the disk angle increases, the stagnation point on the front surface of the disk moves to the center of the surface and the inflow velocity decreases. The maximum flow velocity occurs at the downstream of throat because of the formation of vents contracta. As the pressure ratio decreases, compressibility effects increase and the jet formed between the throttle body wall and the disk edge becomes supersonic. This flow also builds up as a shock cell structure. The increase of disk angle and pressure ratio makes the mass flow at the inlet decrease, while the increase of disk angle and the decrease of pressure ratio make the pressure loss coefficient increase.

Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part I. Jet Flow Condition Effect (측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part I. 제트 유동특성 영향)

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Hyun, Jae-Soo;Kim, Sang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.64-71
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. For this purpose a three dimensional Navier-Stokes computer code(AADL3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for different jet flow conditions including jet pressure and jet Mach number. The results show different behavior of normal force and moment variation according to jet pressure variation and jet Mach number variation. From the detailed flow field analyses, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, it is shown that the pitching moment can be efficiently reduced by obtaining the lateral thrust through higher jet Mach number rather than through high jet pressure.