• Title/Summary/Keyword: Shock and Vibration analysis

Search Result 233, Processing Time 0.028 seconds

Shock Analysis of Transfer System (과도진동을 갖는 설비의 충격해석을 통한 안정성 평가)

  • Ha, Jeong-Min;Lee, Jong-Myeong;Kim, Yong-Hwi;Ahn, Byung-Hyun;Choi, Byeong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.94-96
    • /
    • 2014
  • Press machine has advantage over other manufacturing machine which can produce large quantities of products in short time so it is widely used in lots of industrial sectors. However, vibration problems may occur when operating a high pressure. It has been subjected to the condition monitoring vibration sensors attached to the main point. We perform the maintenance before a failure occurs, the system receives a high load. In this paper, in order to determine the structural characteristics for the transport system to conduct the vibaration and shock analysis.

  • PDF

A Study on Balanced-Type Oscillating Mole Drainer (II) (Model Test For Vibration) (평형식진동탄환암거천공기의 연구(II) -모수실험 : 진동에 대하여-)

  • 김용환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3962-3969
    • /
    • 1975
  • 1. When the frame of the experimental apparatus was directly fixed on the platform, result from the spectrum density analysis showed that the generated vibration frequecy of the system was nearly-same as the system's own characteristic vibration frequency, 80Hz, in the case of the forcing vibration frequency was 7.5 to 22.5Hz. The reduction ratio of acceleration by balanced type model compare to non-balanced type one was 26.66 percent. 2. When the frame of experimental apparatus was fixed on the platform with putting a shock absorbing rubber between the frame and the platform, the generated vibration frequency of the system was same as forcing vibration frequency. When either frequency or the amplitude of the forcing vibration was increased, the acceleration ratio was increased too. The average reduction ratio was resulted 44.77 per cent. It was concluded that this method of acceleration measurement(the method using a shock absorbing rubber) was a reaonable method, because actual machine will work under such condition. As the vibration frequency and aptitude were increased, the absolute magnitude of acceleration was increased. 3. unbalanced rotating parts, and unbalanced moment of inertia of links were supposed to be causing factors of residual vibration in spite of using the balanced type oscillating mole drainer. This fact suggested that the attachment of the counter weight on the rotating parts which satisfy the condition mw$.$rw=m0e, was necessary. And also, it was expected that the shock absorbing effect could be improved by putting the shock absorbing materials between the moving parts and their supports.

  • PDF

NONLINEAR ANALYSIS OF SELF-EXCITED VIBRATION IN WHEELED TRACTOR VEHICLE'S DRIVELINE

  • Li, X.H.;Zhang, J.W.;Zeng, C.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.535-545
    • /
    • 2006
  • A nonlinear analysis of torsional self-excited vibration in the driveline system for wheeled towing tractors was presented, with a 2-DOF mathematical model. The vibration system was described as a second-order ordinary differential equation. An analytical approach was proposed to the solution of the second-order ODE. The mathematical neighborhood concept was used to construct the interior boundary and the exterior boundary. The ODE was proved to have a limit cycle by using $Poincar\'{e}-Bendixson$ Annulus Theorem when two inequalities were satisfied. Because the two inequalities are easily satisfied, the self-excited vibration is inevitable and even the initial slip rate is little. However, the amplitude will be almost zero when the third inequality is satisfied. Only in a few working modes of the towing tractor the third inequality is not satisfied. It is shown by experiments that the torsional self-excited vibration in the driveline of the vehicle is obvious.

Analysis of dynamic characteristics between disk and slider with operational shock in hard disk drive (하드 디스크 드라이브 동작 상태 충격 시에 램프 충돌 유무에 따른 디스크와 슬라이더의 거동해석)

  • Kim, Min-Jae;Lim, Geonyup;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.975-977
    • /
    • 2014
  • Recently, As portability of storage device has been increased, it is important to analyze the precise anti-shock analysis. For non-operational shock analysis, the accuracy of non-operational shock simulation has been improved. However, because operational shock analysis includes nonlinear process, it is hard to get clear result from operational shock simulation. In this paper, by using Lagrange multiplier method, the FE model including ramp-disk contact of nonlinear process will be analyzed. Through this, we find ramp-disk contact affect the dynamic of slider. Additionally, for the more accurate analysis, we should include ramp-disk contact process at the FE model.

  • PDF

The Prediction of the Results of Drop Test Through Shock Analysis (충격해석을 통한 결과의 예측)

  • 박용석;홍성철;박철희;이우식;조항법
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.345-352
    • /
    • 1994
  • Electronic products can be subjected to many different forms of shock. These shocks are usually experienced during transporting the electronic products from a manufacturer to customers. Drop tests are performed to test the product fragility before shipment. Package cushioning materials are often used to protect electronic products from severs shock environments. In the present paper, an algorithm to predict the shock responses of the main mechanical parts is developed by use of the shock analysis in which the modal parameters extracted from vibration test are used. These results are in good agreement with the results of drop test. By use of the shock response prediction algorithm developed herein, it is possible to predict the results of drop test at various drop directions and also to select the optimal package cushioning materials.

  • PDF

A Study of the ER Insert for Reducing the Shock Wave (충격파 차단을 위한 ER Insert의 기초 연구)

  • Kim, Jung-Yeob;Jung, Jae-Min;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.612-618
    • /
    • 2000
  • The underwater explosion which has the high energy brings about the shock wave and the pulsating gas bubble. In general, structural vibration from the shock wave is more serious than the pulsating gas bubble. This shock wave may damage the important fragile structures and equipment in ship. This paper demonstrates that the shock wave propagating the structure can be reduced by ER inserts. The wave transmission of ER inserted beam is theoretically derived using Mead & Markus model, and the theoretical results are composed with the finite element analysis results. To experimentally verify the ER insert, ER insert in an aluminum plate is made and two piezoceramic disks are used as transmitter and receiver. Details of the experiment are addressed.

  • PDF

FE Modeling for the Transient Response Analysis of a Flexible Rotor-bearing System with Mount System to Base Shock Excitation (마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격 과도응답 해석을 위한 유한요소 모델링)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1208-1216
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including aircrafts, ships, and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of their rotors, considering the dynamics of mount designs to be applied. In this study a generalized FE transient response analysis model, introducing relative displacements, is proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model, obtained by treating a rotor as concentrated lumped mass, equivalent spring and a damper or Jeffcott rotor model. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

A FE Transient Response Analysis of a Flexible Rotor-Bearing System with Mount System to Base Shock Excitation (마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격에 대한 유한요소 과도응답 해석)

  • Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.387-392
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems such as warships, submarines and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of rotors, considering the dynamics of mount designs to be applied with. In this study a generalized FE transient response analysis model, introducing relative displacements, is firstly proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model or a Jeffcott rotor. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

  • PDF

Response analysis of 6DOF fuselage model during taxiing for comparison of characteristics of single/double stage oleo-pneumatic shock absorber at nose (단-복동형 유.공압 완충장치의 전방장착특성 비교를 위한 6자유도 기체 모형의 지상 이동 응답해석)

  • Lee, Kook-Hee;Lee, Yoon-Kyu;Kim, Kwang-Joon;Lee, Sang-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.734-735
    • /
    • 2008
  • Shock absorber for rotorcraft landing gear should absorb landing impact during landing and isolate vibration to fuselage during taxiing. Double stage oleo-pneumatic shock absorber is known to have better performances than single stage oleo-pneumatic shock absorber. This paper deals with the z-direction translational acceleration at mass center, roil and pitch angular acceleration of fuselage for single and double stage oleo-pneumatic shock absorber at nose landing gear when a 6DOF rigid model is taxiing on the pound.

  • PDF

Analysis of Pillar Stability for Ground Vibration and Flyrock Impact in Underground Mining Blasting (발파진동 및 비산충격에 대한 광주 안정성 분석)

  • Park, Hyun-Sik;Kim, Ji-Soo;Ryu, Bok-Hyun;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.9-20
    • /
    • 2012
  • These days, mining industry prefers underground development for large mining because of exhaustive minning resources and large drafts and mining cavities thanks to extensive distribution of heavy excavation machines. In a mining design, to control collapse of cavities and secure stability, design of cavities and pillars are considered as very important. Therefore, this study obtained a prediction equation of blasting vibration through instrumentation for underground cavities. And we obtained theoretical shock vibration imposed on pillar through fragmentation analysis and measurement of flyrock distance. To examine the influence of pillar in underground mining blasting, we carried a finite element analysis and compared the result with prediction equation of blasting vibration, and shock vibration of flyrock when a impact was imposed on pillar and theoretical shock vibration.