• Title/Summary/Keyword: Shock Mount

Search Result 42, Processing Time 0.02 seconds

Mounting Time Reduction and Clean Policy using Content-Based Block Management for NAND Flash File System (NAND 플래시 파일 시스템을 위한 내용기반 블록관리기법을 이용한 마운트 시간 감소와 지움 정책)

  • Cho, Wan-Hee;Lee, Dong-Hwan;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.41-50
    • /
    • 2009
  • The flash memory has many advantages such as low power consumption, strong shock resistance, fast I/O and non-volatility. And it is increasingly used in the mobile storage device. Many researchers are studying the YAFFS, NAND flash file system, which is widely used in the embedded device. However, the existing YAFFS has two problems. First, it takes long time to mount the YAFFS file system because it scans whole spare areas in all pages. Second, the cleaning policy of the YAFFS does not consider the wear-leveling so that it cannot guarantee the duration of data completely. In order to solve these problems, this paper proposes a new content-based YAFFS that consists of a mounting time reduction technique and a content-cleaning policy by using content-based block management. The proposed method only scans partial spare areas of some special pages and provides the block swapping which enables the wear-leveling of data blocks. We performed experiments to compare the performance of the proposed method with those of the JFFS2 system and YAFFS system. Experimental results show that the proposed method reduces the average mounting time by 82.2% comparing with JFFS2 and 42.9% comparing with YAFFS. Besides, it increases the life time of the flash memory by 35% comparing with the existing YAFFS whereas no overheat is added.

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.