• 제목/요약/키워드: Shock Mitigation

검색결과 20건 처리시간 0.026초

전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구 (Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials)

  • 고영훈
    • 화약ㆍ발파
    • /
    • 제41권3호
    • /
    • pp.1-12
    • /
    • 2023
  • 근접 폭발로 인해 발생하는 폭발 충격파의 위험을 완화하기 위한 기술에 대한 기초 평가를 수행하였다. 기존의 일반적인 기술로는 폭발물 주변이나 충격파의 진행 방향에 방호물질을 사용하여 차단막을 형성하는 방법이 사용되었다. 다양한 폭발 에너지 분산 메커니즘이 제안되었으며, 임피던스 차이를 활용한 폭발 충격파 완화에 대한 연구가 많은 관심을 받고 있다. 본 연구에서는 전단농화유체(STF)를 충격완화물질로 적용하여 폭발 충격파 완화에 대한 폭발실험 및 수치해석을 통해 STF 완화물질의 효과를 평가하였다. 그 결과로써 STF 완화물질의 폭발 충격압 감쇄성능의 실효성을 확인할 수 있었다.

액주를 이용한 충격파 완화에 대한 수치해석 (Computational Analysis of Mitigation of Shock wave using Water Column)

  • 라자세칼;김태호;김희동
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.49-57
    • /
    • 2022
  • The interaction of planar shock wave with rectangular water column is investigated numerically. The flow phenomenon like reflection, transmission, cavitation, recirculation of shock wave, and large negative pressure due to expansion waves was discussed qualitatively and quantitatively. The numerical simulation was performed in a shock tube with a water column, and planar shock was initiated with a pressure ratio of 10. Three cases of the water column with different thicknesses, namely 0.5D, 1D, and 2D, were installed and studied. Water naturally has a higher acoustic impedance than air and mitigates the shock wave considerably. The numerical simulations were modelled using Eulerian and Volume of fluids multiphase models. The Eulerian model assumes the water as a finite structure and can visualize the shockwave propagation inside the water column. Through the volume of fluids model, the stages of breakup of the water column and mitigation effects of water were addressed. The numerical model was validated against the experimental results. The computational results show that the installation of a water column significantly impacts the mitigation of shock wave.

Tests on explosion-resisting properties of high-performance equal-sized-aggregate concrete composite sandwich plates

  • Yizhong Tan;Songlin Yue;Gan Li;Chao Li;Yihao Cheng;Wei Dai;Bo Zhang
    • Structural Engineering and Mechanics
    • /
    • 제87권4호
    • /
    • pp.297-304
    • /
    • 2023
  • Targeted introduction of explosion-resisting and energy-absorbing materials and optimization of explosion-resisting composite structural styles in underground engineering are the most important measures for modern engineering protection. They could also improve the survivability of underground engineering in wartime. In order to test explosion-resisting and energy-absorbing effects of high-performance equal-sized-aggregate (HPESA) concrete, the explosive loading tests were conducted on HPESA concrete composite plates by field simple explosion craters. Time-history curves of the explosion pressure at the interfaces were obtained under six conditions with different explosion ranges and different thicknesses of the HPESA concrete plate. Test results show that under the same explosion range, composite plate structures with different thicknesses of the HPESA concrete plate differ significantly in terms of the wave-absorbing ability. Under the three thicknesses in the tests, the wave-absorbing ability is enhanced with the growing thickness and the maximum pressure attenuation index reaches 83.4%. The energy attenuation coefficient of the HPESA concrete plate under different conditions was regressively fitted. The natural logarithm relations between the interlayer plate thickness and the energy attenuation coefficient under the two explosion ranges were attained.

수중에서의 감전 메카니즘 특성에 관한 연구 (A Study on the Characteristic of Electric-Shock Mechanism in the Water)

  • 도범성
    • 한국방재학회 논문집
    • /
    • 제7권5호
    • /
    • pp.111-118
    • /
    • 2007
  • 최근에 들어와 가로등에 의한 감전사고가 지속적으로 발생하고 있다. 특히 집중호우로 인해 가로등이 침수될 경우 누전에 의한 감전 사고는 매우 높다. 전기감전사고가 발생할 경우 사고전압을 분석해 보면 주로 220V의 저압시설물에서 발생되고 있으나 이에 대한 위험성을 충분히 인식하지 못하고 있는 실정이다. 가로등 시설물의 사용전압 220V는 주로 일반인이 쉽게 접촉할 수 있는 도로변에 시설되어 있기 때문에 감전사고의 위험성은 매우 높은 편이다. 그러나 가로등 침수로 인해 누전이 발생했을 경우 누전체에서의 거리변화에 따른 수중전위분포가 인체에 미치는 영향을 연구하는 사례는 미약한 실정이다. 본 논문에서는 수중에서 누전이 발생했을 경우에 인체에 미치는 영향과 수중전위분포를 분석하고 수중에서 누전체와의 거리 및 깊이에 따른 변화가 어떻게 인체에 영향을 주는지 실험을 통하여 감전경로와 감전메카니즘을 비교 분석하고자 한다.

Numerical investigation of potential mitigation measures for poundings of seismically isolated buildings

  • Polycarpou, Panayiotis C.;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.1-24
    • /
    • 2011
  • During very strong earthquakes, seismically isolated buildings may experience large horizontal relative displacements, which may lead to poundings if an insufficiently wide clearance is provided around the building. This paper investigates, through numerical simulations, the effectiveness of using rubber bumpers, which could be attached at locations where it is likely to have impacts, in order to act as shock-absorbers. For the simulation of the dynamic behavior of such rubber bumpers during impacts, a nonlinear force-based impact model, which takes into account the finite thickness of the rubber bumpers, has been developed. Subsequently, a series of parametric analyses are performed to assess the effect of the gap size, the earthquake characteristics and the thickness, compressive capacity and damping of the bumpers. The stiffness of the moat wall is also parametrically considered during poundings of a seismically isolated building, as another potential mitigation measure for poundings of seismically isolated buildings.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

수치해석기법을 이용한 초기 인장잔류응력에 대한 레이저 충격 피닝 효과 분석 (Analysis of the Effects of Laser Shock Peening under Initial Tensile Residual Stress Using Numerical Analysis Method)

  • 김주희;이종우;유삼현
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.608-619
    • /
    • 2017
  • In this paper, the effects of parameters related to the residual stress induced due to laser shock peening process to determine mitigation of the initial tensile residual stresses are discussed, such as the maximum pressure, pressure pulse duration, laser spot size and number of laser shots. In order to estimate the influence of the initial tensile residual stresses, which is generated by welding in 35CD4 50HRC steel alloy, the initial condition option was employed in the finite element code. It is found that $2{\times}HEL$ maximum pressure and a certain range of the pressure pulse duration time can produce maximum mitigation effects near the surface and depth, regardless of the magnitudes of tensile residual stess. But plastically affected depth increase with increasing maximum pressure and pressure pulse duration time. For the laser spot size, maximum compressive residual stresses have almost constant values. But LSP is more effective with increasing the magnitudes of tensile residual stress. For the multiple LSP, magnitudes of compressive residual stresses and plastically affected depths are found to increase with increasing number of laser shots, but the effect is less pronounced for more laser shots. And to conclude, even though the initial tensile residual stresses such as weld residual stress field are existed, LSP is enough to make the surface and depth reinforcement effects.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

선박 위 착륙을 위한 임피던스 제어기반 쿼드콥터 족형 랜딩플랫폼 제어 전략 (Control Strategies for Landing Quadcopters on Ships with Legged Platform Based on Impedance Control)

  • 황성현;이승현;진성호;이인호
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.48-57
    • /
    • 2022
  • In this paper, we propose a legged landing platform for the quadcopter taking off and landing in the ship environment. In the ship environment with waves and winds, the aircraft has risks being overturned by contact impact and excessive inclination during landing on the ship. This landing platform has four landing legs under the quadcopter for balancing and shock relief. In order to make the quadcopter balanced on ships, the position of each end effector was controlled by PID control. And shocks have mainly happened when quadcopter contacts the ship's surface as well as legs move fast. Hence, impedance control was used to cope with the shocks. The performance of the landing platform was demonstrated by a simulation and a prototype in three sea states based on a specific size of a ship. During landing and tracking the slope of the ship's surface, oscillations of rotation and translation from the shock were mitigated by the controller. As a result, it was verified that transient response and stability got better by adding impedance control in simulation models and prototype experiments.