• 제목/요약/키워드: Shock Focusing

검색결과 67건 처리시간 0.028초

약한 충격파의 포커싱 현상에 관한 수치해석적 연구 (A Computational Study of the Focusing Phenomenon of Weak Shock Wave)

  • 권용훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.169-172
    • /
    • 2002
  • When a plane shockwave reflects ken a concave wall, it is focused at a certain location, resulting in extremely high local pressure and temperature. This focusing is due to a nonlinear phenomenon of shock wave. The focusing phenomenon has been extensively applied to many diverse folds of engineering and medical treatment as well. In the current study, the focusing of shock wave over a reflector is numerically investigated using a CFD method. The Harten-Yee total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The incident shock wave Mach number $M_{s}\;of\;1.1{\~}l.3$ is applied to the parabolic reflectors with several different depths. Detailed focusing characteristics of the shock wave are investigated in terms of peak pressure, gasdynamic and geometrical foci. The results obtained are compared with the previous experimental results. The results obtained show that the peak pressure of shock wave focusing and its location strongly depend on the magnitude of the incident shock wave and depth of parabolic reflector. It is also found that depending up on the depth of parabolic reflector, the weak shock wave focusing process can classified into three distinct patterns : the reflected shock waves do not intersect each other before and after focusing, the reflected shock waves do not intersect each other before focusing, but intersect after focusing, and the reflected shock waves intersect each other before and after focusing. The predicted Schlieren images represent the measured shock wave focusing with a good accuracy.

  • PDF

2차원 포물형 반사경에 의한 충격파의 촛점형성에 대한 수치해석 (Numerical Analysis of Shock-Wave Focusing from a Two-Dimensional Parabolic Reflector)

  • 최환석;백제현
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.612-623
    • /
    • 1994
  • Shock-wave focusing from a two-dimensional parabolic reflector was simulated using an explicit finite volume upwind TVD scheme. Computations were performed for three different incident shock speeds of $M_s$ = 1.1, 1.2 and 1.3, corresponding to the relatively weak, intermediate, and strong shock waves, respectively. Numerical solutions nicely resolved all the waves evolving through the focusing process. As the incident shock strength increase, a transition was observed in the shock-fronts geometry that was caused by the change in the reflection type of converging shock fronts on the axis of symmetry, from regular-type to Mach-type reflection. The computed maximum on-axis pressure amplification and the trajectories of three-wave intersections showed good agreement with experimental results. The strong nonlinear effect near the focal region which determines the shock-fronts geometries at and behind the focus and at the same time confines the pressure amplification at the focus was clearly revealed from the present numerical simulation.

내장 카티지안 경계법과 파동전파 알고리즘을 사용한 충격파 집속 현상의 수치적 시뮬레이션 (NUMERICAL SIMULATION OF SHOCK FOCUSING PHENOMENON BY CARTESIAN EMBEDDED BOUNDARY METHOD AND WAVE PROPAGATION ALGORITHM)

  • 정연규;장근식
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.14-20
    • /
    • 2010
  • Shock-focusing concave reflectors can have parabolic, circular or elliptic cross-sections. They produce effectively a very high pressure at the focusing point. In the past, many optical images have been obtained on shock focusing via experiments. Measurement of field variables is, however, difficult in the experiment. Using the wave propagation algorithm and the Cartesian embedded boundary method, we have successfully obtained numerical Schlieren images that appear very much like the experimental results. In addition, we obtained the detailed field variables such as pressure, velocity, density and vorticity in the unsteady domain. The present numerical results have made it possible to understand the shock focusing phenomenon in more detail than before.

반사경 내부 유동의 초점 형성에 관한 고해상도 수치 해석 (A HIGH-RESOLUTION NUMERICAL ANALYSIS OF SHOCK FOCUSING IN CONCAVE REFLECTORS)

  • 정연규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.170-175
    • /
    • 2009
  • Shock focusing is related with explosive release of shock wave energy on a narrow spot in a short duration of time triggering a spontaneous high pressure near the focal point. It is well known that reflection of planar incident shock wave from the metallic concave mirror such as ellipsoidal, paraboloidal or hemispherical cavities will focus on a focal point. We intend to improve the computational results using a wave propagation algorithm and to resolve the mushroom-like structure. For computation of the concave cavity flow, it is not easy to use a single-block mesh because of the many singular points in geometry and coordinates. We have employed a uniform Cartesian-grid method for the wave propagation algorithm.

  • PDF

Helmholtz 공명기 내부를 전파하는 비정상 충격파의 수치해석 (Numerical Simulations of an Unsteady Shock Wave Propagating into a Helmholtz Resonator)

  • 이영기;권용훈;신현동;김희동;청목준지
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1643-1648
    • /
    • 2004
  • When a shock wave propagates into a Helmholtz resonator, very complicated wave phenomena are formed both inside and outside the resonator tube. Shock wave reflection, shock focusing phenomena and shock-vortex interactions cause strong pressure fluctuations inside the resonator, consequently leading to powerful sound emission. In the present study, the wave phenomena inside and outside the Helmholtz resonator are, in detail, investigated with a help of CFD. The Mach number of the incident shock wave is varied below 2.0 and several types of resonators are tested to investigate the influence of resonator geometry on the wave phenomena. A TVD scheme is employed to solve the axisymmetric, compressible, Euler equations. The results obtained show that the configuration of the Helmholtz resonator significantly affects the peak pressure of shock wave focusing, its location, the amplitude of the discharged wave and resonance frequency.

  • PDF

타원형 반사면에 의한 충격파 초점 변화에 관한 수치적 연구 (Numerical Study on the Shock Wave Focusing of Elliptic Reflectors)

  • 고창천;심은보;사종엽
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.35-43
    • /
    • 1999
  • In this study, the shock wave focusing of an elliptic reflector is numerically simulated by solving the Euler equations. The numerical method is the second order upwind TVD scheme with a finite volume discretization. For the verification of the present method, we simulate the moving shock wave passing through a two-dimensional corner. The computed isopycnics are compared with the earlier experiment. Numerical results of the elliptic reflectors show that the density and pressure at the focusing point increase linearly as the aspect ratio of the reflector becomes deep. On the other hand, the gas dynamic focal length decreased with the increase of the reflector aspect ratio.

  • PDF

포커싱 에러를 최소화하기 위한 광디스크의 형상설계 (Design of Optical Disk Profile for Minimizing the Focusing Error)

  • 홍석준;지중근;이종수;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.1015-1021
    • /
    • 2002
  • Optical disk is the media which is used generally in data storage device, but it has a disadvantage in the vibration by spinning and the shock. For overcoming these disadvantage, we must control the optical disk to minimize the focusing error and tacking error. The present study investigates the disk profile for minimizing the focusing error subjected to environmental shock and weight of the disk. In this study, the disk is assumed to be a cantilever beam to determine the disk profile for the minimum displacement as to the shock considering only the first mode. Also, for the optimally determined profile by ADS program this paper recalculate the robust caltilever profile by using orthogonal array and ANOM.

  • PDF

내충격성 향상을 위한 HDD Actuator의 거동 연구 (Analysis of Shock Mechanism and Actuator Behavior of HDD)

  • 손진승;좌성훈;이행수;홍민표
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.449-454
    • /
    • 2001
  • The shock performance of hard disk drives has been a serious issue for portable computers and AV application HDD. Focusing on the motion of an actuator, we investigated non-operational shock mechanism and studied several parameters that affect the shock performance by experimental analysis. It was found that there are two important factors fort the actuator to endure high shock revel. One is a shock transmissibility and the other is a beating between the arm blade and the suspension. To generalize the shock transmissibility, the concept of shock response spectrum was introduced. The shock response spectrum of the actuator system was obtained experimentally and compared with that of an analytical single degree of freedom model. It was found that there was a good agreement. The first bending natural frequency of the arm blade was found to be the most important factor for the low shock transmissibility. By applying the shock response spectrum and avoiding the beating, we could design an actuator of high shock performance.

  • PDF

중둔건 석회화 건염의 초음파 유도하 정확한 조준에 의한 체외충격파치료 -증례 보고- (Ultrasound-guided Exact Focusing of Extracorporeal Shock Wave Therapy for the Calcific Tendinitis of Gluteus Medius - A Case Report -)

  • 문상호;이송;김광해;정종필;홍성원
    • 대한정형외과 초음파학회지
    • /
    • 제5권2호
    • /
    • pp.94-98
    • /
    • 2012
  • 석회화 건염은 건-골 부착부에 침착된 칼슘 수산화 인회석 결정 주위로 염증이 생기는 질환인데 체외충격파치료가 석회화 건염에 대한 비침습적 치료로써 효과적으로 많이 사용되고 있다. 실제 임상에서는 병변 부위에 정확히 체외충격파를 시행하기보다는 주로 촉진과 압통 부위 확인만으로 충격파 시행범위를 정하고 있다. 방사선 투시하에 석회 침착부위에 정확히 체외충격파를 시행하는 것이 임상 결과가 월등히 우수하다는 것은 알려져 있다. 초음파는 간편하고 비싸지 않으며 방사선 피폭이 없으면서 건 질환을 진단하는데 아주 효과적인 진단 기기이지만 체외충격파 치료의 조준에 있어서의 역할은 확립되어 있지 않다. 저자들은 중둔건에 발생한 거대 석회화 건염을 초음파를 이용하여 병변 부위의 위치를 정확히 조준하면서 체외충격파치료를 시행함으로써 석회 침착의 완전 소실을 얻은 증례를 경험하였기에 문헌 고찰과 함께 보고하고자 한다.

  • PDF

포커싱 에러를 최소화하기 위한 광디스크 형상설계 (Design of Optical Disk Profile for Minimizing the Focusing Error)

  • Hong, Seok-Joon;Jee, Jung-Guen;Park, No-Cheol;Lee, Jongsoo;Park, Young-Pil
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.398.2-398
    • /
    • 2002
  • Optical disk is the media which is used generally in data storage device, but it has a disadvantage in the vibration by the spinning and the shock. For overcoming these disadvantage, we must control the optical disk to minimize the focusing and tracking error. The present study investigates the disk profile fur minimizing the focusing error subjected to environmental shock and weight of the disk. (omitted)

  • PDF