• Title/Summary/Keyword: Shock Cell Structure

Search Result 46, Processing Time 0.029 seconds

Effect of Node Size on the Performance of the B+-tree on Flash Memory (플래시 메모리 상에서 B+-트리 노드 크기 증가에 따른 성능 평가)

  • Park, Dong-Joo;Choi, Hae-Gi
    • The KIPS Transactions:PartA
    • /
    • v.15A no.6
    • /
    • pp.325-334
    • /
    • 2008
  • Flash memory is widely used as a storage medium for mobile devices such as cell phones, MP3 players, PDA's due to its tiny size, low power consumption and shock resistant characteristics. Additionally, some computer manufacturers try to replace hard-disk drives used in Laptops or personal computers with flash memory. More recently, there are some literatures on developing a flash memory-aware $B^+$-tree index for an efficient key-based search in the flash memory storage system. They focus on minimizing the number of "overwrites" resulting from inserting or deleting a sequence of key values to/from the $B^+$-tree. However, in addition to this factor, the size of a physical page allocated to a node can affect the maintenance cost of the $B^+$-tree. In this paper, with diverse experiments, we compare and analyze the costs of construction and search of the $B^+$-tree and the space requirement on flash memory as the node size increases. We also provide sorting-based or non-sorting-based algorithms to be used when inserting a key value into the node and suggest an header structure of the index node for searching a given key inside it efficiently.

Cellular and Molecular Pathology of Fungi on Plants Studied by Modern Electron Microscopy

  • Sanwald, Sigrun-Hippe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.27-53
    • /
    • 1995
  • In plant pathology there is an increasing necessity for improved cytological techniques as basis for the localization of cellular substances within the dynamic fine structure of the host-(plant)-pathogen-interaction. Low temperature (LT) preparation techniques (shock freezing, freeze substitution, LT embedding) are now successfully applied in plant pathology. They are regarded as important tools to stabilize the dynamic plant-pathogen-interaction as it exists under physiological conditions. - The main advantage of LT techniques versus conventional chemical fixation is seen in the maintenance of the hydration shell of molecules and macromolecular structures. This results in an improved fine structural preservation and in a superior retention of the antigenicity of proteins. - A well defined ultrastructure of small, fungal organisms and large biological samples such as plant material and as well as the plant-pathogen (fungus) infection sites are presented. The mesophyll tissue of Arabidopsis thaliana is characterized by homogeneously structured cytoplasm closely attached to the cell wall. From analyses of the compatible interaction between Erysiphe graminis f. sp. hordei on barley (Hordeum vulgare), various steps in the infection sequence can be identified. Infection sites of powdery mildew on primary leaves of barley are analysed with regard to the fine structural preservation of the haustoria. The presentation s focussed on the ultrastructure of the extrahaustorial matrix and the extrahaustorial membrane. - The integration of improved cellular preservation with a molecular analysis of the infected host cell is achieved by the application of secondary probing techniques, i.e. immunocytochemistry. Recent data on the characterization of freeze substituted powdery mildew and urst infected plant tissue by immunogold methodology are described with special emphasis on the localization of THRGP-like (threonine-hydrxyproline-rich glycoprotein) epitopes. Infection sites of powdery mildew on barley, stem rust as well as leaf rust (Puccinia recondita) on primary leaves of wheat were probed with a polyclonal antiserum to maize THRGP. Cross-reactivity with the anti-THRGP antiserum was observed over the extrahaustorial matrix of the both compatible and incompatible plant-pathogen interactions. The highly localized accumulation of THRGP-like epitopes at the extrahaustorial host-pathogen interface suggests the involvement of structural, interfacial proteins during the infection of monocotyledonous plants by obligate, biotrophic fungi.

  • PDF

Approach-avoidance, Stress Response, and Body Temperature of Dogs Following Removal of the Mamillary Bodies (유두체를 떼어버린 개의 접근-회피반응, 스트레스에 대한 반응 및 체온 변동)

  • Kim, Chul;Park, Rho-Soon
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1968
  • As a continuation of a series of work on the physiology of the mamillary bodies, 3 experiments were carried out using 8 pointer dogs subjected surgical removal of this hypothalamic structure by subtemporal approach. In the first experiment, animals were tested per- and postoperatively in approach-avoidance situation. Food served as incentive, electric shock to the tongue as punishment, and response latency of postpunishment trial as an index of fear. The second experiment dealt with per- and postoperative tests in stress situation. A high frequency sound (12,000 cycle, 100 db sound for 1 hour) was regarded as a stressor, and decrease in blood eosinophil cell count as an index of response th the stress. Pre- and postoperative measurement of rectal temperature was carried out in the third experiment, using a clinical thermometer with decimal centigrade scale. The results obtained were as follows: 1. Tests in approach-avoidance situation showed no indication of increased or decreased fear response following removal of the mamillary bodies. 2. Postoperative stress response was as marked as that of preoperative period, but the recovery from the stress was significantly retarded after surgery. 3. The body temperature dropped slightly, but significantly following damage to the mamillary bodies.

  • PDF

Fungal laccases from basidiomycetes and their inducibility (담자균으로부터 생산되는 균체 Laccases 및 이 효소의 유도특성)

  • Leonowicz, Andrzej;Wilkolazka, A.;Rogalski, J.;Kim, Dong-Hoon;Cho, Nam-Seok
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.127-139
    • /
    • 2004
  • Laccases are multicopper-containing enzymes which catalyze the oxidation of phenolic and nonphenolic compounds with the concomitant reduction of molecular oxygen. They often occur as isoenzymes, either constitutive or inducible, that oligomerize to multilateral complexes, what allow for penetration to the woody cell wall structure. White rot basidiomycete fungi may produce a number of laccase isoenzymes, some constitutively and others after induction. Fungal laccase is commonly induced by many ions, such as $Cu^{2+}$, $Cd^{2+}$ $Ca^{2+}$, $Li^+$, $Mn^{2+}$, $Ag^+$, $Hg^{2+}$, Mn and $Fe^{3+}$, phenolic compounds, some organic compounds, such as ethanol, isopropanol, cAMP, caffeine, p-anisidine, viscosinamide and paraquat, and nitrogens and even heat shock. A combination of Cu and pHB (p-hydroxybenzoic acid) made it possible to extend the inducible laccase activities over 30-fold. But the most effective inducer of laccase in the basidiomycete and other higher fungi is 2,5-xylidine, over 160-fold stimulation of laccase activity. The laccases are frequently encoded by gene families, as e.g. in Pycnoporus cinnabarinus, from which the lcc3-1 or the allelic form lac1 and lac3-2 have been cloned and sequenced. In the case of inducible forms the post-inductional laccase formation depends upon the synthesis of mRNA and the induction is due to the synthesis of a new protein.

  • PDF

Characterization of Root Transcriptome among Korean Ginseng Cultivars and American Ginseng using Next Generation Sequencing (차세대염기서열 분석을 이용한 고려인삼과 미국삼의 전사체 분석)

  • Jo, Ick Hyun;Kim, Young Chang;Lee, Seung Ho;Kim, Jang Uk;Kim, Sun Tae;Hyun, Dong Yun;Kim, Dong Hwi;Kim, Kee Hong;Kim, Hong Sig;Chung, Jong Wook;Bang, Kyong Hwan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.339-348
    • /
    • 2014
  • The transcriptomes of four ginseng accessions such as Cheonryang (Korean ginseng cultivar), Yunpoong (Korean ginseng cultivar), G03080 (breeding line of Korean ginseng), and P. quinquefolius (American ginseng) was characterized. As a result of sequencing, total lengths of the reads in each sample were 156.42 Mb (Cheonryang cultivar), 161.95 Mb (Yunpoong cultivar), 165.07 Mb (G03080 breeding line), and 166.48 Mb (P. quinquefolius). Using a BLAST search against the Phytozome databases with an arbitrary expectation value of 1E-10, over 20,000 unigenes were functionally annotated and classified using DAVID software, and were found in response to external stress in the G03080 breeding line, as well as in the Cheonryang cultivar, which was associated with the ion binding term. Finally, unigenes related to transmembrane transporter activity were observed in Cheonryang and P. quinquefolius, which involves controlling osmotic pressure and turgor pressure within the cell. The expression patterns were analyzed to identify dehydrin family genes that were abundantly detected in the Cheonryang cultivar and the G03080 breeding line. In addition, the Yunpoong cultivar and P. quinquefolius accession had higher expression of heat shock proteins expressed in Ricinus communis. These results will be a valuable resource for understanding the structure and function of the ginseng transcriptomes.

Micro-Spot Atmospheric Pressure Plasma Production for the Biomedical Applications

  • Hirata, T.;Tsutsui, C.;Yokoi, Y.;Sakatani, Y.;Mori, A.;Horii, A.;Yamamoto, T.;Taguchi, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.44-45
    • /
    • 2010
  • We are currently conducting studies on culturing and biocompatibility assessment of various cells such as neural stem cells and induced pluripotent stem cells(IPS cells) on carbon nanotube (CNT), on nerve regeneration electrodes, and on silicon wafers with a focus on developing nerve integrated CNT based bio devices for interfacing with living organisms, in order to develop brain-machine interfaces (BMI). In addition, we are carried out the chemical modification of carbon nanotube (mainly SWCNTs)-based bio-nanosensors by the plasma ion irradiation (plasma activation) method, and provide a characteristic evaluation of a bio-nanosensor using bovine serum albumin (BSA)/anti-BSA binding and oligonucleotide hybridization. On the other hand, the researches in the case of "novel plasma" have been widely conducted in the fields of chemistry, solid physics, and nanomaterial science. From the above-mentioned background, we are conducting basic experiments on direct irradiation of body tissues and cells using a micro-spot atmospheric pressure plasma source. The device is a coaxial structure having a tungsten wire installed inside a glass capillary, and a grounded ring electrode wrapped on the outside. The conditions of plasma generation are as follows: applied voltage: 5-9 kV, frequency: 1-3 kHz, helium (He) gas flow: 1-1.5 L/min, and plasma irradiation time: 1-300 sec. The experiment was conducted by preparing a culture medium containing mouse fibroblasts (NIH3T3) on a culture dish. A culture dish irradiated with plasma was introduced into a $CO_2$-incubator. The small animals used in the experiment involving plasma irradiation into living tissue were rat, rabbit, and pick and are deeply anesthetized with the gas anesthesia. According to the dependency of cell numbers against the plasma irradiation time, when only He gas was flowed, the growth of cells was inhibited as the floatation of cells caused by gas agitation inside the culture was promoted. On the other hand, there was no floatation of cells and healthy growth was observed when plasma was irradiated. Furthermore, in an experiment testing the effects of plasma irradiation on rats that were artificially given burn wounds, no evidence of electric shock injuries was found in the irradiated areas. In fact, the observed evidence of healing and improvements of the burn wounds suggested the presence of healing effects due to the growth factors in the tissues. Therefore, it appears that the interaction due to ion/radicalcollisions causes a substantial effect on the proliferation of growth factors such as epidermal growth factor (EGF), nerve growth factor (NGF), and transforming growth factor (TGF) that are present in the cells.

  • PDF