• Title/Summary/Keyword: Ship system

Search Result 4,023, Processing Time 0.035 seconds

Development of Doubler Plate Design System for Ship Structure Subjected to In-plane Combined Loads and Lateral Pressure (면내조합하중과 횡압 하의 선박 이중판 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.146-152
    • /
    • 2019
  • A design system was developed for the doubler plate of a ship structure simultaneously subjected to in-plane loads and lateral pressure based on general dimensions and those of a representative ship structure. An equivalent design equation that considers various structural design parameters was derived by introducing the equivalent plate thickness theory, and the design of the doubler plate reinforcement of the ship structure was developed. A hybrid structural design system was established for a doubler plate simultaneously subjected to in-plane loads and lateral pressure consisting of two modules: an optimized design module and a double plate strength & design review module. The practical application of this design system was illustrated to show its usability. It was found that the design safety of the doubler plate was ensured, and this system could be used as an initial design guide to review the double plate reinforcement for a dent or corrosion of the ship plate members. Using the developed design system would make it possible to obtain a more reasonable doubler plate structure that considers the rational reinforcement of plate members of ship structures. In addition, a more reliable structural analysis using a strength evaluation process can be performed to verify the efficiency of the optimum structural design for the doubler plate structure.

A Study on the ICCP Control and Monitoring System for Ship (선박용 ICCP 제어 감시 시스템에 관한 연구)

  • 이지영;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.667-674
    • /
    • 2004
  • This thesis is about the Impressed Current Cathodic Protection (ICCP) control and monitoring system. which brings protection against the corrosion of the ship's hull in the sea environments. The ICCP system is composed of a power supply. anode. reference electrode and controller. AC sources from the ship's generator are converted to DC sources in terms of power supply, and a protection current is sent to ship's hull though anode. The controller fully senses whether or not the detected potential is within a range of protection of ship's hull and then it is automatically controlled to increase or decrease the amount of protective current to be sent to the anode. The monitoring system with RS 232/485 communication is also studied in order to check the normal state of the system at a long period. because an operator does not always watch over this system and thus the system cannot operate well because of his or her negligent management. Since the vessel always navigates in the sea. an characteristics experiment of the ICCP system is conducted by introducing various corrosive environmental factors such as velocity, resistivity, dissolved oxygen, PH, temperature and contamination degree. These results must be referred to when the ICCP system is set up. In short. the ICCP is a multi-system for use on ships and on land structures because it includes a safety device. It is suggested that this system can accomodate a ship's automation and will be very useful.

An Algorithm for Robust Noninteracting Control of Ship Propulsion System

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • In this paper, a new algorithm for noninteracting control system design is proposed and applied to ship propulsion system control. For example, if a ship diesel engine is operated by consolidated control with controllable pitch propeller (CPP), the minimum fuel consumption is achieved satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption, and the both pitch angle of CPP and throttle valve angle are controlled simultaneously. In this context of view, this paper gives a controller design method for a ship propulsion system with CPP based on noninteracting control theory. Where, linear matrix inequality (LMI) approach is introduced for the control system design to satisfy the given $H_{\infty}$, constraint in the presence of physical parameter perturbation and disturbance input. To the end, the validity and applicability of this approach are illustrated by the simulation in the all operating ranges.

  • PDF

An Experimental Study on the Development of the Anti-Rolling Control System for a Ship (선체 횡동요 방지 장치 개발을 위한 실험적 연구)

  • 김영복;변정환;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, an actively controlled anti-rolling system is considered to reduce the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and actuator us connected between the auxiliary mass and a ship. The actuator reacts against the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we apply the PID controller to design the anti-rolling control system for the controlled ship. And the experimental result shows that the desirable control performance is achieved.

  • PDF

A New Approach to Robustly Exchange Models in Heterogeneous CAD/CAE Environment and its Application

  • Kim, In-Il;Jang, Young-Heuy;Suh, Heung-Won;Han, Seong-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.2
    • /
    • pp.11-23
    • /
    • 2006
  • The model exchange from CAD system to CAE system in valid and effective manner is the major issue of automatic analysis modelling of ship structure. However, model exchange approaches based on the neutral CAD file have resulted in invalid model exchange that could not properly reflect the characteristics of CAD model and CAE model of ship structure. This paper presents the new approach of n-to-n mapping to exchange ship structure model in heterogeneous CAD/CAE environments. In this study, the common model called 'unified ship model for analysis' to directly extract proper information from different CAD systems for ship structural analysis is proposed. Moreover, a command language based model interfacing technique to construct an idealized model for analysis job is also proposed. The proposed approach has been actually implemented in DSME CAD/CAE environment of ship structure such as TRIBON system, PATRAN system and FLUENT system. The applicability and effectiveness of the proposed approach was verified by applying it to the real analysis project for fore-body of ship and block lifting. This application results show that the proposed approach can be effectively used for heterogeneous CAD/CAE environment.

Implementation of RFID Monitoring System based on PLC Ship (선박에서의 PLC기반 RFID 모니터링 시스템 구현)

  • Ahn, Byeong-Hoon;Baek, Dong-Won;Yoon, Seon-Tae;Park, Sang-Hwan;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.646-652
    • /
    • 2008
  • Recently, as the ship has undergone a development for smart ship or digital ship. PLC is communication system using the preexistence power line and using PLC as transmission medium to monitoring of equipments is an efficient way to design a system for ship. In this paper, we design and implement RFID monitoring system based on PLC for ship. This proposed system can support monitoring the moving of passenger, crew and important cargo by RHO tag data on shipboard.

  • PDF

Artificial neural network controller for automatic ship berthing using head-up coordinate system

  • Im, Nam-Kyun;Nguyen, Van-Suong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.235-249
    • /
    • 2018
  • The Artificial Neural Network (ANN) model has been known as one of the most effective theories for automatic ship berthing, as it has learning ability and mimics the actions of the human brain when performing the stages of ship berthing. However, existing ANN controllers can only bring a ship into a berth in a certain port, where the inputs of the ANN are the same as those of the teaching data. This means that those ANN controllers must be retrained when the ship arrives to a new port, which is time-consuming and costly. In this research, by using the head-up coordinate system, which includes the relative bearing and distance from the ship to the berth, a novel ANN controller is proposed to automatically control the ship into the berth in different ports without retraining the ANN structure. Numerical simulations were performed to verify the effectiveness of the proposed controller. First, teaching data were created in the original port to train the neural network; then, the controller was tested for automatic berthing in other ports, where the initial conditions of the inputs in the head-up coordinate system were similar to those of the teaching data in the original port. The results showed that the proposed controller has good performance for ship berthing in ports.

A Study on Quality Improvement Methodology based on SE and M&S for Navy Ship Acquisition Process (함정의 품질 제고 방법론 연구)

  • Cho, Man-Hyeong;Choi, Bong-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.198-213
    • /
    • 2012
  • Navy ship acquisition management business contributed to the korean Navy and defense exports with government suppliers in Korea for over 40 years. But due to advanced technology, development trend of Navy ship and defense export requirements, it enable to make a contribution to a better system improvement are being demanded. In this paper, an adjective Navy ship acquisition process is presented in order to improve the acquisition process takes the first step for acquisition planning process to enhance the efficiency and rationality that is based on consensus of Navy ship expert and experienced. In addition, systems engineering (SE) and quality control (QC) techniques based on Modeling and Simulation are investigated to carry out efficient project management and scientific quality control system in Navy ship acquisition process. Finally, it is suggested to apply SE/QC based on M&S for Navy ship acquisition process using civilian infrastructure and organizations in order to take advantage of the world's leading domestic industry based on considering the difficult conditions of Navy ship suppliers.

Assessment of surface ship environment adaptability in seaways: A fuzzy comprehensive evaluation method

  • Jiao, Jialong;Ren, Huilong;Sun, Shuzheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.344-359
    • /
    • 2016
  • Due to the increasing occurrence of maritime accidents and high-level requirements and modernization of naval wars, the concept of ship environment adaptability becomes more and more important. Therefore, it is of great importance to carry out an evaluation system for ship environment adaptability, which contributes to both ship design and classification. This paper develops a comprehensive evaluation system for ship environment adaptability based on fuzzy mathematics theory. An evaluation index system for ship environment adaptability is elaborately summarized first. Then the analytic hierarchy process (AHP) and entropy weighting methods are applied to aggregate the evaluations of criteria weights for each criterion and the corresponding subcriteria. Next, the multilevel fuzzy comprehensive evaluation method is applied to assess the ship integrative environment adaptability. Finally, in order to verify the proposed approach, an illustrative example for optimization and evaluation of five ship alternatives is adopted. Moreover, the influence of criteria weights, membership functions and fuzzy operators on the results is also analyzed.

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.