• Title/Summary/Keyword: Ship system

Search Result 4,051, Processing Time 0.038 seconds

A Study on the Captive Model Test of KCS in Regular Waves (KCS 선형의 규칙파 중 구속모형시험에 대한 연구)

  • Choi, Hujae;Kim, Dong Jin;Kim, Yeon Gyu;Yeo, Dong Jin;Yun, Kunhang;Lee, Gyeongjung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.296-305
    • /
    • 2022
  • In order to investigate maneuvering characteristics of KCS in waves, captive model test in regular waves was conducted. Purpose of the test is measuring maneuvering hull forces when ship is maneuvering in waves. Model test was carried out using CPMC (Computerized Planar Motion Carriage) of ocean engineering basin in KRISO (Korea Research Institute of Ships and Ocean engineering). Total 6 degrees-of-freedom motion were fixed by two points supporting captive model test device, which is specially designed for this test. This system estimates 6 degrees-of-freedom forces and moments through 12 strain gauge signals. Mapping matrix from strain gauge signals to 6 degrees-of-freedom forces and moments was derived by a well-organized calibration test. Static drift test was conducted in calm sea and in regular waves with various wave conditions. Hydrodynamic coefficients related to drift angle were extracted for each wave conditions, and the effect of waves on course stability was analyzed.

Disaster Prediction, Monitoring, and Response Using Remote Sensing and GIS (원격탐사와 GIS를 이용한 재난 예측, 감시 및 대응)

  • Kim, Junwoo;Kim, Duk-jin;Sohn, Hong-Gyoo;Choi, Jinmu;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.661-667
    • /
    • 2022
  • As remote sensing and GIS have been considered to be essential technologies for disasters information production, researches on developing methods for analyzing spatial data, and developing new technologies for such purposes, have been actively conducted. Especially, it is assumed that the use of remote sensing and GIS for disaster management will continue to develop thanks to the launch of recent satellite constellations, the use of various remote sensing platforms, the improvement of acquired data processing and storage capacity, and the advancement of artificial intelligence technology. This spatial issue presents 10 research papers regarding ship detection, building information extraction, ocean environment monitoring, flood monitoring, forest fire detection, and decision making using remote sensing and GIS technologies, which can be applied at the disaster prediction, monitoring and response stages. It is anticipated that the papers published in this special issue could be a valuable reference for developing technologies for disaster management and academic advancement of related fields.

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

Methodology for estimating the damage rate of equipment mounted on the warship (해상 플랫폼 탑재장비 손실률 산정 방법 - 워게임모델 적용을 중심으로 -)

  • Jeong Kwan, Yang;Bong Seok, Kim;Ji Hoon, Kyung;Hyun Shik, Oh
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2022
  • Accurately predicting wartime resources requirements and preparing war supplies in peacetime is an important task that can determine the outcome of the war by guaranteeing the duration of the operation. The wartime warship damage rate is a measure of estimating the battle damage of our warships in the process of performing battles to achieve the war goal. In the previously studied wartime warship damage rate estimation method, when damage occurs, long-term repair is required due to the complexity and specificity of the ship structure. Only the case of a complete defeat at the level of sinking was defined as a damage, and even if it was impossible to perform a maritime operation mission, it was not estimated as a damage if the level of sinking was not reached. Therefore, in order to improve the reliability of the wartime warship damage rate, the equipment damage assessment level can be estimated based on the warhead weight of the threat weapon system, the vulnerability rate of the warship's equipment, and the warship's hull. In the future, it is expected that the estimation methodology proposed in this study will be used as a simulation logic when developing a model for analyzing the wartime resources requirements for the warship's equipment and hull.

A Study on The Design and Structural Strength of L-Type Davit with Electric Cylinder Type Actuator for Offshore Plant and Ship (해양플랜트·선박용 전기실린더형 액추에이터를 탑재한 L타입 데빗의 설계 및 구조강도에 관한 연구)

  • Young-Hun Kim;Da-Seoung Kwak;Ki-Hyun Park;Jae-Rin Shim;Yong-Won Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.175-181
    • /
    • 2023
  • In offshore plants, various equipments including cranes and davits are used for safety management. Hydraulic cylinder type actuators are mainly used for luffing operations such as cranes and davits. However, in the case of a cylinder using hydraulic pressure, a separate power pack is required to supply hydraulic pressure. When used for a long time, maintenance costs such as sticking of hydraulic valves, contamination of hydraulic oil and deterioration of hydraulic hoses occur. In addition, a lot of hydraulic oil is used in the handling of cranes and davits, which causes marine pollution due to management problems. As a result, as interest in marine pollution prevention has increased recently, interest in actuators that do not use hydraulic pressure is also increasing. Therefore, in this study, we intend to develop a davit with an electric cylinder type actuator that uses electricity rather than hydraulic pressure by the SOLAS regulation. In other words, the conceptual design of the davit driven through the linear motion of the ball screw using electricity is performed, and the structural safety of the drive is also reviewed so that it can be utilized in the industrial field.

Electromagnetic Susceptibility Design of Tracking Radar Systems (추적 레이다 시스템의 전자기파 내성 설계)

  • Hong-Rak Kim;Youn-Jin Kim;Seong-Ho Park;Man Hee LEE;Da-Been LEE
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2023
  • The tracking radar system is installed and operated on the ground, ships, and aircraft, and requires a design to withstand electromagnetic interference with nearby electronic devices. In this case, radiation and immunity standards for cable connection must be satisfied to prevent malfunction of other equipment due to electromagnetic wave interference caused by cables connected to the tracking radar. The radiation standard must also be satisfied so that the electromagnetic wave noise generated and radiated from the tracking radar does not affect the peripheral device, so that the immunity standard for the electromagnetic wave emitted from the peripheral device must be satisfied. In this paper, we propose a design to satisfy MIL-STD-461G including CE, CS, RE, and RS, and explain design satisfaction through tests.

Design of Marine Environment Monitoring and Analysis System (해양환경 감시 및 분석 시스템의 설계)

  • Park, Sun;Choi, Myeong Soo;Jo, Ji Woo;Lee, Yeonwoo;Jung, Min A;Lee, Seong-Ho;Kim, Jun-Seok;Kim, Beom-Mu;Yang, Jun-Cheol;Lee, Seong Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.609-612
    • /
    • 2011
  • 국내 해양 환경에 대한 조사 및 분석 연구는 미흡한 편에 있다. 최근 세계적으로 바다가 자원의 보고로 주목 받으면서 해양 모니터링 기술에 대한 연구가 활발히 진행 되고 있다. 특히 해양 환경을 분석하고 이해하기 위해서는 지속적으로 해양 환경 자료를 수집해야 하나 아직 많은 부분에서 제약 사항으로 남아 있다. 자동화된 해양 환경 자료의 수집과 수집된 자료를 분석하여서 해양재해를 예측하면 기름 유출에 의한 해양오염의 피해, 적조에 의한 수산업의 피해, 해양환경 이변에 의한 수산업 및 재해 피해를 최소화하는데 기여할 수 있다. 본 논문은 해양환경 감시 및 분석 시스템의 모델을 제안한다. 제안 시스템은 해양환경 정보를 자동 수집하여 해양환경을 지능적으로 감시한다. 또한 수집된 해양 자료를 분석하여서 해양 재해를 예측한다.

The Impact Analysis of the Leakage Scenario in the Tank of Hydrogen Fuel Cell Vessel (수소연료전지선박의 탱크 내 누출시나리오에 따른 영향분석)

  • Sang-Jin Lim ․;Yoon-Ho Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • As an alternative to environmental pollution generated from fossil fuels currently in use, research is being actively conducted to use hydrogen that does not cause air pollution. As fire and explosion accidents caused by hydrogen leakage have occurred until recently, research on safety is needed to commercialize hydrogen on ships, which are special environments. In this study, a seasonal alternative scenario for each season and the worst scenario were assumed in the event of a leakage accident while a hydrogen fuel cell propulsion ship equipped with a hydrogen storage tank was navigating at JangSaengPo port in Ulsan. In order to consider environmental variables, the damage impact range was derived through ALOHA and probit analysis based on the annual average weather data for 2021 by the Korea Meteorological Administration and on geographic information data from the National Statistical Office. Radiation showed a wider damage range than that of Overpressure and Flame in both the alternative and worst-case scenarios, and as a result of probit analysis, a fatality rate of 99% was confirmed in all areas.

Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle (소형 위그선의 탄소/에폭시 복합재 주익의 구조 설계 및 해석에 관한 연구)

  • Park, Hyun-Bum;Kang, Kuk-Jin;Kong, Chang-Duk
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, conceptual structural design of the main wing for a small scale WIG(Wing in Ground Effect) among high speed ship projects, which will be a high speed maritime transportation system for the next generation in Rep. of Korea, was performed. The Carbon/Epoxy material was selected for the major structure, and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for the present study, firstly the design load was estimated through the critical flight load case study, and then flanges of the front and rear spars from major bending loads and the skin and the spar webs from shear loads were preliminarily sized using the netting rule and the rule of mixture. Stress analysis was performed by a commercial FEA code, NASTRAN. From the stress analysis results for the first designed wing structure, it was confirmed that the upper skin between the front spar and the rear spar was unstable fer the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich type structure at the skin and the web were added. After design modification, the structural safety and stability for the final design feature was confirmed. In addition to this, the insert bolt type structure with eight high strength bolts to fix the wing structure to the fuselage was adopted for easy assembly and removal as well as in consideration of more than 20 years fatigue life.

Strategy of Chungnam-type Doctor UAM for Transfering Emergency Patient in Island area (도서지역 응급환자 이송을 위한 충남형 닥터 UAM 개발 전략)

  • Song, Doo-youl;Kim, Taehong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.167-169
    • /
    • 2021
  • There are only 14 public medical facilities available to residents regularly in the island area of Chungcheongnam-do, one health life support center, and one hospital ship, and these facilities and equipment cannot effectively respond to emergency patients such as severe trauma, cerebrovascular and cardiovascular diseases. The fastest means of transporting emergency patients is to use a doctor helicopter deployed at Dankook University Hospital (based in Cheonan). However, there is only one doctor helicopter deployed, and it cannot operate at night, and since it is in charge of all areas of Chungcheongnam-do, there is a limit to rapid transport in the event of a large number of patients. Therefore, we would like to review the necessity of "Chungnam-type Doctor UAM Development" to compensate for the problems of the urban aviation mobility (UAM) industry and the emergency patient transport system in islands, a field of the 4th industry.

  • PDF