• Title/Summary/Keyword: Ship system

Search Result 4,035, Processing Time 0.037 seconds

Characteristics of Ship Movements in a Fairway

  • Kim, Eun Kyung;Jeong, Jung Sik;Park, Gyei-Kark;Im, Nam Kyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.285-289
    • /
    • 2012
  • In a coastal area, all of the vessels are always exposed to the potential risk, taking into the maritime accident statistics account over the last decades. To manage vessels underway safety, the characteristics of ship movements in a fairway should be recognized by VTS system or VTS operators. The IMO has already mandated the shipboard carriage of AIS since 2004, as stated in SOLAS Chapter V Regulation 19. As a result, the static and dynamic information of AIS data has been collected for vessel traffic management in the coastal areas and used for VTS. This research proposes a simple algorithm of recognizing potentially risky ships by observing their trajectories on the fairway. The static and dynamic information of AIS data are collected and the curvature for the ship trajectory is surveyed. The proposed algorithm finds out the irregularity of ship movement. The algorithm effectively monitors the change of navigation pattern from the curvature analysis of ship trajectory. Our method improves VTS functions in an intelligent way by analyzing the navigation pattern of vessels underway.

Implementation of an Obstacle Avoidance System Based on a Low-cost LiDAR Sensor for Autonomous Navigation of an Unmanned Ship (무인선박의 자율운항을 위한 저가형 LiDAR센서 기반의 장애물 회피 시스템 구현)

  • Song, HyunWoo;Lee, Kwangkook;Kim, Dong Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.480-488
    • /
    • 2019
  • In this paper, we propose an obstacle avoidance system for an unmanned ship to navigate safely in dynamic environments. Also, in this paper, one-dimensional low-cost lidar sensor is used, and a servo motor is used to implement the lidar sensor in a two-dimensional space. The distance and direction of an obstacle are measured through the two-dimensional lidar sensor. The unmanned ship is controlled by the application at a Tablet PC. The user inputs the coordinates of the destination in Google maps. Then the position of the unmanned ship is compared with the position of the destination through GPS and a geomagnetic sensor. If the unmanned ship finds obstacles while moving to its destination, it avoids obstacles through a fuzzy control-based algorithm. The paper shows that the experimental results can effectively construct an obstacle avoidance system for an unmanned ship with a low-cost LiDAR sensor using fuzzy control.

Study on Extension of the 6-DOF Measurement Area for a Model Ship by Developing Auto-tracking Technology for Towing Carriage in Deep Ocean Engineering Tank

  • Jung, Jae-sang;Lee, Young-guk;Seo, Min-guk;Park, In-Bo;Kim, Jin-ha;Kang, Dong-bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.50-60
    • /
    • 2022
  • The deep ocean engineering basin (DOEB) of the Korea Research Institute of Ship and Ocean Engineering (KRISO) is equipped with an extreme-environment reproduction facility that can analyze the motion characteristics of offshore structures and ships. In recent years, there have been requirements for a wide range of six-degree-of-freedom (6-DOF) motion measurements for performing maneuvering tests and free-running tests of target objects (offshore structures or ships). This study introduces the process of developing a wide-area motion measurement technology by incorporating the auto-tracking technology of the towing carriage system to overcome the existing 6-DOF motion measurement limitation. To realize a wide range of motion measurements, the automatic tracking control system of the towing carriage in the DOEB was designed as a speed control method. To verify the control performance, the characteristics of the towing carriage according to the variation in control gain were analyzed. Finally, a wide range of motions was tested using a model test object (a remotely operated vehicle (ROV)), and the wide-area motion measurement technology was implemented using an automatic tracking control system for a towing carriage.

Formulation for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.293-308
    • /
    • 2006
  • This paper presents a complete and consistent formulation to study the seismic response of a free-standing ship supported by an arrangement of n keel blocks which are all located in a dry dock. It is considered that the foundation of the system is subjected to both horizontal and vertical in plane excitation. The motion of the system is classified in eight different modes which are Rest (relative), Sliding of keel blocks, Rocking of keel blocks, Sliding of the ship, Sliding of both keel blocks and the ship, Sliding and rocking of keel blocks, Rocking of keel blocks with sliding of the ship, and finally Sliding and rocking of keel blocks accompanied with sliding of the ship. For each mode of motion the governing equations are derived, and transition conditions between different modes are also defined. This formulation is based on a number of fundamental assumptions which are 2D idealization for motion of the system, considering keel blocks as the rigid ones and the ship as a massive rigid block too, allowing the similar motion for all keel blocks, and supposing frictional nature for transmitted forces between contacted parts. Also, the rocking of the ship is not likely to take place, and the complete ship separation from keel blocks or separation of keel blocks from the base is considered as one of the failure mode in the system. The formulation presented in this paper can be used in its entirety or in part, and they are suitable for investigation of generalized response using suitable analytical, or conducting a time-history sensitivity analysis.

A Methodology for the Ship System Integration with Open Architecture : Focusing on the Total Ship Computing Environment based Architecture Building and Validation (개방형 구조(OA)를 이용한 함정체계통합 구축 방법론 : 통합함정컴퓨팅환경(TSCE)기반 아키텍처 구축 및 검증을 중심으로)

  • Park, Gang-Soo;Yoo, Byeong-Chun;Kim, Kyeongtaek;Choi, Bong-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.68-76
    • /
    • 2020
  • In a series of recent launch tests, North Korea has been improving the firepower of its missiles that can target South Korea. North Korea's missiles and submarines are capable of threatening targets in South Korea and are likely faster and more covert than the systems previously seen in North Korea. The advanced threats require that ROK Navy should not only detect them earlier than ever but also response quicker than ever. In addition to increasing threats, the number of young man that can be enlisted for military service has been dramatically decreasing. To deal with these difficulty, ROK navy has been making various efforts to acquire a SMART warship having enhanced defense capability with fewer human resources. For quick response time with fewer operators, ROK Navy should improve the efficiency of systems and control tower mounted on the ship by promoting the Ship System Integration. Total Ship Computing Environment (TSCE) is a method of providing single computing environment for all ship systems. Though several years have passed since the first proposal of TSCE, limited information has been provided and domestic research on the TSCE is still in its infancy. In this paper, we apply TSCE with open architecture (OA) to solve the problems that ROK Navy is facing in order to meet the requirements for the SMART ship. We first review the level of Ship System Integration of both domestic and foreign ships. Then, based on analyses of integration demands for SMART warship, we apply real time OA to design architecture for TSCE from functional view and physical view. Simulation result shows that the proposed architecture has faster response time than the response time of the existing architecture and satisfies its design requirements.

Conceptual Design of Navigation Safety Module for S2 Service Operation of the Korean e-Navigation System

  • Yoo, Yun-Ja;Kim, Tae-Goun;Song, Chae-Uk;Hu, Shouhu;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.277-286
    • /
    • 2017
  • IMO introduced e-Navigation concept to improve the efficiency of ship operation, port operation, and ship navigation technology. IMO proposed sixteen MSPs (Maritime Service Portfolio) applicable to the ships and onshore in case of e-Navigation implementation. In order to meet the demands of the international society, the system implementation work for the Korean e-Navigation has been specified. The Korean e-Navigation system has five service categories: the S2 service category, which is a ship anomaly monitoring service, is a service that classifies emergency levels according to the degree of abnormal condition when a ship has an abnormality in ship operation, and provides guidance for emergency situations. The navigation safety module is a sub-module of the S2 service that determines the emergency level in case of navigation equipment malfunctioning, engine or steering gear failure during navigation. It provides emergency response guidance based on emergency level to the abnormal ship. If an abnormal condition occurs during the ship operation, first, the ship shall determine the emergency level, according to the degree of abnormality of the ship. Second, an emergency response guidance is generated based on the determined emergency level, and the guidance is transmitted to the ship, which helps the navigators prevent accidents and not to spread. In this study, the operational concept for the implementation of the Korean e-Navigation system is designed and the concept is focused on the navigation safety module of S2 service.

A Crew Location Recognition System for a Naval Ship by Applying Ubiquitous Technologies

  • Lee, Jin-Tae;Cho, Seong-Rak;Kim, Seong-Jeon
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.26-35
    • /
    • 2008
  • Recognition of real time locations of crews for a naval ship is important, not only for the operation efficiency but also for the safety of onboard crews in the ship. More than 100 crews are dwelling in a modem naval ship and they are involved in various duties. Moreover many visitors come in and out frequently while the ship is moored in a harbor. It sometimes requires considerable time and efforts to find a person for urgent mission. It would enhance the operational efficiency if locations of onboard crews are recognized and monitored in real time. An active type RFID tag, which has a specific ID number, is distributed to each crew member, which should be carried during his stay in the ship. A number of fixed type RFID readers are to be located at the major passages of the ship, which are connected to the main computer via Local Area Network. The location of a crew would be identified by the ID number of his RFID tag and the location of the RFID reader which detected the RFID tag. A middleware is needed to process the collected data in the main computer. The data is fed to application softwares, which actually display locations of the concerned crews. The software is coded using GUI (Graphic User Interface) for better user friendliness, which has the function of storing the location history of a crew, and sending warning messages to appropriate persons, if unallowable behavior is detected. An auxiliary naval ship is selected for an experimental application study of the proposed system. It turns out that the required budget and time for the realization of the system is within the allowable limits. But complementary measures to protect the privacy of onboard crews should be considered and adopted, before the application of the system is realized.

Remote Control Management System for Autonomous Ship (자율운항선박을 위한 원격제어관리시스템)

  • Lee, Kwangil
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.45-51
    • /
    • 2018
  • Autonomous ship has been sportlighted as a core technology for the maritime industry in Industry 4.0 era. Autonomous ship is expeected to improve the safety, reliability, efficiency and environment significantly. For the realization of the autonomous ship, the remote control of the ship is one of the core functionality in addition to the autonomous ship control functionality in a ship. In this paper, we address a autonomous ship control system based on remote control. This paper proposes a remote control autonomous system and standardized ship-to-shore remote control protocol with for open platform. Finally, we implemented the system and tested with a real experiments with the test ship in order to demonstrate the feasibility of the proposed remote control autonomous system.

An Analysis of Future Ship Operation System under the e-navigation Environment

  • An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.259-265
    • /
    • 2015
  • It is clearly understood that e-navigation is beneficial to prevent collision and grounding of ships. The purpose of this study is to define and present a future ship operation system under the e-navigation environment in order to provide clear direction for the design of Korean e-navigation system. The future ship operation system consists of shipboard navigational system, shore supporting system and maritime communication system. To achieve the objectives of this study, the ship operation system was discussed separately into SOLAS ships and non-SOLAS ships in this study. In SOLAS ships, mariners become a system manager, choosing system presets, interpreting system output, and monitoring vessel response. In small ships and fishing vessels, mariners may enjoy their navigation by using the automatic tracking of ship's position on the portable electronic chart display. The improved bridge design, integrated and harmonized navigational system and single window reporting will reduce significantly the administrative and physical workload of mariners. Mariners can concentrate their attention more on navigational duty under the e-navigation environment. To build an effective Korean e-navigation system, the essential navigational functions and e-navigation services for small ships and fishing vessels must be identified and developed taking into account user needs.

Performance analysis of dynamic positioning system with loss of propulsion power of T/S NARA (실습선 나라호의 추진력 상실에 따른 동적위치제어시스템의 성능 분석)

  • LEE, Jun-Ho;KONG, Kyeong-Ju;JUNG, Bong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • In order for the probe to perform ocean exploration and survey research, it is necessary to adjust the position of the ship as desired by dynamic positioning system. The dynamic positioning system of T/S NARA is applied to K-POS dynamic positioning system of Kongsberg, which makes maintaining the ship's position, changing position and heading control possible. T/S NARA is not capable of dynamic positioning if one or more propulsive forces are lost with DP Level One. However, it is predicted that dynamic positioning can be achieved even at the time of missing one thrust in a good sea condition. Therefore, we want to analyze the effect of each propulsion on the performance of dynamic position system. When one of the bow thruster and azimuth thrusters lost their propulsion, maintaining the ship's position, changing position and heading control performance were compared and analyzed. If the situation occurred disable from using the bow thruster, they can not maintain ship's position. Azimuth thruster was influential for the ship's position control and bow thruster was influential in heading control. The excellent dynamic positioning performance can be achieved, considering the propulsion power that will have a impact on each situation in the future.