• Title/Summary/Keyword: Ship motions

Search Result 291, Processing Time 0.023 seconds

Estimation of Ship Collision Energy with Bridge (교량의 선박충돌 에너지 산정)

  • Lee Seong-Lo;Kang Sung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.416-419
    • /
    • 2004
  • The kinetic energy during ship collision with bridge piers is released as the permanent deformations of structure and friction between the impact surfaces. So the ship collision energy is estimated from the equations of motions for ship-pier collisions which include the influence of the surrounding water, different impact angles and impact locations. The normal impact energy and tangent impact energy at a collision location and angle can be transformed into the normal impact force and friction force acting on the structure. Also the kinetic energy after collisions is calculated from the linear and angular impulse of ship collisions. The collision energy absorption system such as the protective structures for bridges is designed by evaluating the damage portions of ship and structure during the ship-structure collisions varying from the soft impact to hard impact and then the estimation of it will be suited for the design of protective measures.

  • PDF

Analysis of Motions and Moorings of a Berthed Ship (정박된 선박의 운동 및 계류력 분석)

  • Jo, Chul-Hee;Chung, Kwang-Sic
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.204-208
    • /
    • 2002
  • Mooring is the operation of securing a ship to a wharf or quay by means of rapes or chains. A. moored ship need not necessarily be truly stationary. It may be free to rise and fall with the tick or the loading and unloading of cargo or to oscillate in response to the action of the environmental forces. In this respect a moored ship is restricted to a limited amount of movement within well-defined bounds. This study is intended to analyze the tension of mooring lines by a FEM program, as the current velocities and working directions are varied. The motion of a berthed ship is studied concerning with the wave periods and the direction. Also the behavior of the modeled vessel are investigated for a berthed condition.

  • PDF

A Study on the Hydrodynamic Interaction Forces between Ship and Bank Wall in the Proximity of Bank (측벽부근을 항해하는 선박과 측벽간의 상호 간섭력에 관한 연구)

  • Lee, Chun-Ki;Kang, Il-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • It is well known that the hydrodynamic interaction forces between ship and bank wall affect ship manoeuvring motions. In this paper, the calculation method based on the slender body theory for estimation of the hydrodynamic interaction forces between ship and bank wall is investigated. The numerical simulations on hydrodynamic interaction force acting on a ship in the proximity of bank wall are carried out by using this theoretical method. The theoretical method used in this paper will be useful for practical prediction of ship manoeuvrability at the initial stage of design, for discussion of marine traffic control system and for automatic control system of ship in confined waterways.

CFD Application for Prediction of Ship Added Resistance in Waves

  • Kim, Byung-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.135-145
    • /
    • 2018
  • This paper deals with the added resistance of a ship in waves using computational fluid dynamics (CFD). The ship added resistance is one of the key considerations in the design of energy-efficient ship. In this study, the added resistance of a LNG carrier in head waves is computed using a CFD code to consider the nonlinearity and the viscous effects. The unsteady Reynolds Averaged Navier-Stokes equation (RANS) is numerically solved and the volume of fluid (VOF) approach is used to simulate the free surface flows. The length of incident wave varies from half the ship length to twice the ship length. To investigate the nonlinearity effect, both the linear wave condition and the nonlinear wave condition are considered. The heave and pitch motions are calculated along with the added resistance, and the wave contours are obtained. Grid convergence test is conducted thoroughly to achieve the converged motion and resistance values. The calculated results are compared and validated with experimental data.

The Characteristics of Motion Response of Stern Trawlers according to the Wave Height and the Ship's Speed in the Sea (선미식(船尾式) 트롤선(船)의 해양항행중(海洋航行中) 파고(波高)와 선속(船速)에 따른 선체(船体) 동요특성(動搖特性))

  • Kang, Il-Kwon;Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.199-212
    • /
    • 2000
  • It is very important to investigate the hull response of a fishing vessel in the sea to ensure the safe navigation and fishing operation in rough sea by preserving excellent sea keeping qualities. For this purpose, the author measured various responses of three stem trawlers in waves using real sea experimental measuring system. The author analyzed the experimental data using the statistical and spectral analyzing method to get the characteristics of the motion responses of the vessels according to the wave height and the ship's speed. The results obtained can be summarized as follows ; (1) Rather higher response of the pitch motion due to the wave height appeared in the head sea and the bow sea than any other wave direction without relevance to ship's size. In case of the roll motion, the beam sea and the quartering sea have a high response value. The period of peak of the pitch motion and the roll motion according to the wave height in each vessel has almost same value respectively. (2) The change of response of the pitch motions deeply depend on the ship's speed in the head sea and the bow sea, but not in the other wave direction. (3) The change of response of the roll motions in the beam sea, the quartering sea and the following sea are affected by the influence of the ship's speed in 5k't to 8k't, but not related to the ship's speed in out of that range.

  • PDF

Prediction of Motion Responses between Two Offshore Floating Structures in Waves

  • Kim, Mun-Sung;Ha, Mun-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.13-25
    • /
    • 2002
  • In this paper, the motion responses with hydrodynamic interaction effect between two off-shore floating structures in various heading waves are studied by using a linearized three-dimensional potential theory. Numerical calculations using three-dimensional pulsating source distribution techniques have been carried out for twelve coupled linear motion responses and relative motions of the barge and the ship in oblique waves. The computational results give a good correlation with the experimental results and also with other numerical results. As a result, the present computational tool can be used effectively to predict the motion responses of multiple offshore floating structures in waves.

Well Dock Design and Assessment of Relative Motions During the Operation of the Landing Crafts Within Well Dock (상륙정 입·출거시 안전성을 위한 Well Dock의 형상 및 상대운동 평가)

  • Yoon, Sang-Hyun;Seo, Kwan-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.164-173
    • /
    • 2012
  • Landing ship tank with well dock has the important mission transferring troops or landing equipments from sea to shore. Such transfers are usually carried out using landing crafts, which are loaded or unloaded in flooded well dock. In this situation, as relative motions are occur between well dock and landing craft, safety verifications are demanded. In this paper, seakeeping and safety performances are investigated through model test. First of all, well dock dimensions are reviewed and model tests are performed with sea state 3&4 in 180degree wave direction. Model tests are conducted for three relative positions and seakeeping performances are investigated each position.

Attitude control of foil-catamaran

  • Rhee, Key-Pyo;Lee, Gyoung-Jung;Lee, Sim-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.150-153
    • /
    • 1995
  • In this paper the attitude control system is developed for longitudinal motion of Foil-Catamaran in regular waves with all-movable foils which attached to fore and after part of the ship and verified the system by theoretical calculation and model-tests. The linearized equations of motion of the ship is employed to apply the linear control theories, the PID control and the LQR. The strip method was used to calculate hydrodynamic coefficients and wave exciting forces of the demi hull, and unsteady hydrodynamic forces of foils are considered by using the result of Wu(1972). About 40-60% of motions is reduced in experiments. The control system described in this paper is able to extended to 6-DOF motions or control in irregular wave with trivial modification. And it is applicable to hull shape development for better seakeeping performance and to determine the size and the position of hydrofoils for the attitude control.

  • PDF

A study on the Motions of a ship with Liquid Cargo Tanks (화물창의 유체유동을 고려한 선체운동에 관한 연구)

  • 박명규;김순갑;김동준
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.139-155
    • /
    • 1986
  • In this paper the dynamic effects due to the free water motions in tanks upon the lateral motion of a floating body in regular waves are calculated, in order to obtain the relationship between a motion of a floating body and that of the free water in tanks. Under the assumption that the fluid is ideal and motion amplitudes are small, velocity potential of the fluid in tanks is calculated by the source distribution method and the hydrodynamic forces and moments are calculated by the integration of fluid pressures over the tank surface. Hydrodynamic effects of the fluid on the floating body are expressed in terms of added mass and coupling coefficient obtained from the integration. Computations are carried out for ship with seven wide center tanks and comparisons between the liquid cargo loading case and the rigid cargo loading case are shown.

  • PDF

A Study on the Evaluation of Synthetic Seakeeping Performance of a Ship Using Real Time Weather Data (실시간 기상정보를 이용한 선박의 종합내항성능 평가에 관한 연구)

  • 김순갑;이상민;이충로
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.04a
    • /
    • pp.90-100
    • /
    • 1998
  • There is a limitation for a ship which is sailing on sea to gather weather and seastate informations. To make up for this weakness , land organizations can gather wider variety of information and evaluate the seakeeping performance on ship. and supply this information to the ship. In this study, calculated the response amplitude of ship motions with the weather information provided in real time, the norminal speed loss with obtaining increased of resistance caused by wave and stochastic process of the seakeeping performance elements. And the results have been achieved to develop a system whichcan evaluate the synthetic seakeeping performance. Using this system , the results have been studied to determine the feasibility of using this simulation inactual operation onboard ship.

  • PDF