• 제목/요약/키워드: Ship maneuvering simulation

검색결과 109건 처리시간 0.018초

A Study on Development of Laptop-Based Pilots' Ship-Handling Simulation Software

  • Jeong, Tae-Gwoen;Chen, Chao;Lee, Shin-Geol;Lee, Jeong-Jin;Huh, Yong-Bum
    • 한국항해항만학회지
    • /
    • 제36권7호
    • /
    • pp.571-575
    • /
    • 2012
  • Berthing and unberthing maneuver is essential work for marine pilots and securing the safety against risks during the maneuver is more important than anything else. Moreover, the maneuvering environment in ports and harbors has changed rapidly and got worse due to development of a new port, the advent of a new type or large-sized ship, and the rapid increase in harbor traffic. As one of measures taken to cope with such changes in the maneuvering environment and for each pilot to improve his own maneuvering ability, this paper developed laptop-based ship-handling simulator which is readily available anytime and anywhere. This paper is to develop a conning display for ship's maneuvering and electronic chart based display widely used nowadays to represent a model ship's movement. The displays were arranged appropriately considering pilot age, easy handling by mouse, using a maximum screen, proper arrangement of rudder, engine, thruster, tug etc and representation of information. Up to now thirteen (13) model ships were developed based on real-ship, whose mathematical model is Japanese MMG & pilots' low speed maneuver.

Numerical Study on Unified Seakeeping and Maneuvering of a Russian Trawler in Wind and Waves

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu;Kim, Young Hun
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.173-182
    • /
    • 2021
  • The maneuvering performance of a ship on the actual sea is very different from that in calm water due to wave-induced motion. Enhancement of a ship's maneuverability in waves at the design stage is an important way to ensure that the ship navigates safely. This paper focuses on the maneuvering prediction of a Russian trawler in wind and irregular waves. First, a unified seakeeping and maneuvering analysis of a Russian trawler is proposed. The hydrodynamic forces acting on the hull in calm water were estimated using empirical formulas based on a database containing information on several fishing vessels. A simulation of the standard maneuvering of the Russian trawler was conducted in calm water, which was checked using the International Maritime Organization (IMO) standards for ship maneuvering. Second, a unified model of seakeeping and maneuvering that considers the effect of wind and waves is proposed. The wave forces were estimated by a three-dimensional (3D) panel program (ANSYS-AQWA) and used as a database when simulating the ship maneuvering in wind and irregular waves. The wind forces and moments acting on the Russian trawler are estimated using empirical formulas based on a database of wind-tunnel test results. Third, standard maneuvering of a Russian trawler was conducted in various directions under wind and irregular wave conditions. Finally, the influence of wind and wave directions on the drifting distance and drifting angle of the ship as it turns in a circle was found. North wind has a dominant influence on the turning trajectory of the trawler.

PC를 이용한 선박조종연습 DESKTOP Simulator개발에 관한 연구 (A Study on the Development of PC-based DestTop Ship Maneuvering Simulator for trainning purpose)

  • 허용범;윤점동
    • 한국항해학회지
    • /
    • 제20권2호
    • /
    • pp.1-13
    • /
    • 1996
  • Most of the ShipHandling Simulators of full-mission-bridge system need vast area to install and even PC-based maneuvering simulators are often equipped with Steering Wheel or Engine Telegraphe etc. of data input interface, which necessarily makes the user face with excessive financial burden. These have been one of the obstacles for the officers, captains, pilots and students in access to maneuvering simulation whenever they want to try it in advance prior to actual ship maneuvering. Subsequently, all the officers and captains come to have little chances to train themselves until they arualified as a pilot after a long period of time of realship maneuvering practice on board, which means they have to control they have to control their own ship at sea without clear understanding on her maneuverability when they are forced to do it on the way. And these lack of capability for maneuvering have used so often to result in marine casualties of collision with other ships or pier facilities while maneuvering in harbor. To prevent those accidents by means of enhancing their maneuvering ability, PC-based DeskTop Simulator that allows anyong to access readily at anytime is needed and in conformation to such demand this simulator has been developed. The Software this simulator written in Turbo Pascal Ver. 5.0 has adopted MMG mathmatical model theoretically in part and also it was designed to make it possible that all numeric data inputs and outputs with graphic presentation for maneuvering operation be carried out just only with keyboard and monitor console. With the Simulation software, all the officers, captains, pilots and even students who has a proper computer at hand are expected to be able to make an attempt to simulate the maneuvering of their ownship or any other types of them at any port in which they want to do it.

  • PDF

파랑 표류력을 고려한 선박의 파랑 중 선회성능 해석 (Numerical Analysis of Turning Performance in Waves by Considering Wave Drift Forces)

  • 서민국;남보우;김연규
    • 대한조선학회논문집
    • /
    • 제55권2호
    • /
    • pp.103-115
    • /
    • 2018
  • This paper performs a numerical computation of ship maneuvering performance in waves. For this purpose, modular-type model (MMG (Mathematical Modeling Group) model) is adopted for maneuvering simulation and wave drift force is included in the equation of maneuvering motion. In order to compute wave drift force, two different seakeeping programs are used: AdFLOW based on Wave Green function method and SWAN based on Rankine panel method. When wave drift force is calculated using SWAN program, not only ship forward speed but also ship lateral speed are considered. By doing this, effects of lateral speed on wave drift force and maneuvering performance in waves are confirmed. The developed method is validated by comparing turning test results in regular waves with existing experimental data. Sensitivities of wave drift force on maneuvering performance are, also, checked.

선박운항 시뮬레이터를 위한 해양파 가시화 방안 고찰 (A Review on the Visualization Plan of Ocean Waves for Ship Maneuvering Simulator)

  • 박세길;오재용;박진아
    • 해양환경안전학회지
    • /
    • 제21권2호
    • /
    • pp.215-222
    • /
    • 2015
  • 본 기술보고에서는 선박운항 시뮬레이터를 위한 해양파 가시화의 개선을 목적으로 여러 해양파 가시화 요소 및 그에 대한 전체적인 재현 방안에 대해 고찰하였다. 이를 위해 우선 해양파 가시화 요소를 해양파 표면, 해양파 부서짐, 상호작용, 광원, 수중 등으로 구분하고, 각 구성 요소별 가시화가 필요한 세부 가시화 요소들을 정리 하였다. 또한 이를 재현하는 과정에서 설계에 반영해야 할 내용들을 사실적 해양파 가시화 및 실시간 해양파 가시화, 선박 운동특성 재현, 시뮬레이터의 활용 관점에서 분석하였다. 분석을 통해, 사실적 해양파 가시화가 몰입감 형성 및 보다 정확한 선박 운동특성 재현, 다양하고 제어 가능한 시뮬레이션 시나리오 생성 등에 중요한 역할을 수행함을 확인하였다. 또한 선박운항 시뮬레이터를 위한 해양파 가시화는 고려해야 할 요소 및 그에 대한 구현 방안, 관련 제약 사항이 많은 만큼 구현 전 종합적이고 체계적인 접근이 필요함을 확인하였다.

A Study on the Minimum Safe Distance between Two Vessels in Confined Waters

  • Lee, Chun-Ki;Moon, Serng-Bae
    • 한국항해항만학회지
    • /
    • 제38권6호
    • /
    • pp.561-565
    • /
    • 2014
  • This paper is mainly concerned with the interaction effects between two vessels and sidewall with a mound. Experimental study on hydrodynamic forces between ship and sidewall with a mound was already shown in the previous paper, measured by varying the distances between ship and sidewall. The ship maneuvering simulation was conducted to find out the minimum safe distance between vessels, which is needed to avoid sea accident in confined waters. From the inspection of this investigation, it indicates the following result. When and if one vessel passes the other vessel through the proximity of sidewall with a mound, the spacing between two vessels is needed for the velocity ratio of 1.2, compared to the case of 1.5. Also, for the case of ship-size estimation, the ship maneuvering motion is more affected by interaction effects for the overtaken small vessel, compared to the overtaking large vessel.

타의 종류에 따른 컨테이너선의 조종성능 특성 연구 (Experimental Study on the Variation of Maneuvering Characteristics of Container Ship with Rudder Type)

  • 김연규;김선영;김성표;이석원
    • 대한조선학회논문집
    • /
    • 제41권5호
    • /
    • pp.28-33
    • /
    • 2004
  • Generally Horn-type rudders have been used for single propeller and single rudder system. The reason is that the rudder torques of Horn-type rudder are smaller than those of Spade rudder with same lift force. But it is found that the rudder cavitation occurs on a Horn-type rudder of fast container ship. In this paper the comparison results of Horn-type and Spade rudders are described. HPMM tests are carried out to compare the effects of two rudder types on the maneuverability of a ship. It is shown that the maneuvering performance of a ship equipped with Horn-type rudder is better than that equipped with Spade rudder by comparing the test results and maneuvering coefficients at scantling condition. The reason is that the movable part area of Horn-type rudder is about 14% larger than that of Spade rudder with same total area. And the rudder torque of Spade rudder is greater than that of Horn rudder. At ballast condition, however, the effect of rudder type is negligible.

타력 증대가 저속 운항 선박의 조종성능에 미치는 영향에 관한 수치적 연구 (A Numerical Study on the Effects of Maneuverability of Ship with Low Forward Speed by Increasing Rudder Force)

  • 김현준;김상현;김동영;김인태;한지수
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.217-227
    • /
    • 2016
  • Recent accidents of crude oil tankers have resulted in sinking, grounding of vessels and significant levels of marine pollution. Therefore, International Maritime Organization (IMO) has been strengthening the regulations of ship maneuvering performance in MSC 137. The evaluation of maneuvering performance can be made at the early design stage; it can be investigated numerically or experimentally. The main objective of this paper was to investigate the maneuvering performance of a VLCC due to the increase of rudder force at an early design stage for low speed in shallow water conditions. It was simulated in various operating condition such as deep sea, shallow water, design speed and low speed by using the numerical maneuvering simulation model, developed using MMG maneuvering motion equation and KVLCC 2 (SIMMAN 2008 workshop). The effect of increasing the rudder force can be evaluated by using numerical simulation of turning test and ZIG-ZAG test. The research showed that, increasing the rudder force of a VLCC was more effective on improving the turning ability than improving the course changing ability especially. The improvement of turning ability by the rudder force increasing is most effective when the ship is sailing in shallow water at low forward speed.

소형 컴퓨터를 이용한 선박 조종 시뮬레이터 개발 (Development of a PC-based Ship Maneuvering Simulator)

  • 이창민;강창구;공인영;김연규
    • 한국항만학회지
    • /
    • 제5권2호
    • /
    • pp.39-63
    • /
    • 1991
  • A PC-based ship maneuvering simulator was developed which was configured in a high performance IBM PC compatible i486 and i286 computer with a TMS 340 graphic signal processor and 10 MBPS Ethernet Cards. A real-time ship maneuvering simulation program was developed which includes computer generated imagery (CGI) for bird's eye view type and perspective view type. The simulator H/W was designed and manufactured and S/W for interface of various navigation equipments was made Especially, programs for output, analysis, and assessment of simulations results were developed. Communications between PC's are made by using Ethernet bus type LAN system. Simulations could be performed under various environments (current, wind, wave etc.) using data base of harbors and ships. This system can be used for various purposes such as crew's training, harbor and waterway design, and assessment of ship maneuverability in harbor.

  • PDF

A Study on Comparison between Center of Lateral Resistance and Pivot Point being Used in Handling Ships at the Present Time

  • Jeong, Tae-Gweon
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2012년도 추계학술대회
    • /
    • pp.160-161
    • /
    • 2012
  • The traditional theory regarding the pivot point of a ship during maneuvering, so called apparent pivot point, is located nearly at 1/3 ship's length from the bow when the ship is moving ahead, and between 1/4 ship's length from the stern and the rudder post when going astern. The pivot point is sometimes considered to be the centre of leverage for forces acting on the ship. However, the pivot point is located out of ship due to strong lateral force, such as current and it is very inconvenient to use during maneuvering a ship. In this paper firstly, pivot points due to ship's condition are investigated carefully. And then the center of lateral resistance used at the present are determined. While a new lateral force is added, we can compare the pivot point with the center of lateral forces. Finally, we will suggest the center of all lateral forces for maneuvering instead of pivot point. Especially, it will be very helpful for pilots to handle ships in simulation.

  • PDF