• Title/Summary/Keyword: Ship hull condition

Search Result 194, Processing Time 0.022 seconds

Numerical and experimental investigation of conventional and un-conventional preswirl duct for VLCC

  • Shin, Hyun-Joon;Lee, Jong-Seung;Lee, Kang-Hoon;Han, Myung-Ryun;Hur, Eui-Beom;Shin, Sung-Chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.414-430
    • /
    • 2013
  • This paper shows the study of preswirl duct as an effective energy saving devices that have been devised and reviewed to support the propeller performance, especially for the ship of VLCC with large block coefficients. From the bare hull wake measurements, typical upper/lower asymmetry of hull wake at the propeller disk was found. The 2 kinds of pre-swirl duct, Unconventional half circular duct and Conventional circular pre-swirl duct have been designed and reviewed to recover the loss of propeller running in that condition. The general function of the pre-swirl duct was set to work against this asymmetry of wake and generate pre-swirled flow into the propeller against the propeller rotating direction. The optimum self propulsion tests with various angle configurations were carried out and the best configuration was decided. Accordingly, cavitation test was carried out with best configuration of unconventional half circular duct. The blade surface and tip vortex cavitation behaved smoother when the duct was mounted. The hull pressure amplitudes reflected this difference, so the hull pressure amplitude with duct was smaller than that of without duct.

Hull form design for the fore-body of medium-sized passenger ship with gooseneck bulb

  • Yu, Jin-Won;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.577-587
    • /
    • 2017
  • The recent IMO MEPC regulation on EEDI, EEOI and increased fuel cost has worsened the financial condition of the small and medium sized passenger ferry companies, and it is situated to acquire the economic ships with a pretty high resistance performance. The purpose of this research is to develop a design method on the efficient gooseneck bulb for the middle-sized passenger ferry operated in the Far East Asian seas. The hull forms are designed by varying the gooseneck bulb parameters to find the changes on the resistance performance according to the shape of bulb. The numerical series tests are made to derive the regression equation for estimating the resistance through analyzing the data statistically. This equation is set as an objective function, and then using the optimization algorithm searches for the optimal combination of the design variables. After a hull form is designed corresponding to optimized parameters.

Numerical Analysis on the Wave Resistance for Development of Ship`s From of Tuna Purse Seiner (참치 선망어선의 선형개발을 위한 조파저항의 수치해석)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.228-239
    • /
    • 1992
  • The purpose of the present research is to develop an efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. Some numerical results for series 60, C sub(b) =0.6, hull are presented in this paper. The wave pattern and wave resistance are computed at two Froude numbers, 0.267 and 0.304. These results are better than those of Michell's thin ship theory in comparison with measured results. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

Analysis of Resistance Performance for Various Trim Conditions on Container ship Using CFD (CFD를 이용한 컨테이너 선형의 트림별 저항성능 해석)

  • Seo, Dae-Won;Park, Hyun-Suk;Han, Ki-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • Vessels are traditionally optimized for a single condition, normally the contract speed at the design draft. The actual operating conditions quite often differ significantly. At other speed and draft combinations, adjusting the trim can often be used to reduce the hull resistance. Changing the trim is easily done by shifting ballast water. There are several ways to assess the effect of the trim on the hull resistance and fuel consumption, including in-service measurements, model tests, and CFD. In this paper, CFD is employed for the assessment of the resistance performance according to the trim conditions. The commercial CFD code of the STAR-CCM+ is utilized to evaluate the ship’s resistance performance on a 6,800 TEU container ship. To validate of the effectiveness of STAR-CCM+, the experimental result of the KCS hull form is compared with the result from STAR-CCM+. It is found that the total resistance of the 6,8000 TEU container ship was reduced by 2.6% in the case of a 1-m trim by head at 18knots.

NUMERICAL ANALYSIS OF THE FLOW AROUND THE HULL AND THE PROPELLER OF A SHIP ADVANCING IN SHALLOW WATER (천수에서 전진하는 선박의 선체 및 추진기 주위 유동 수치 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.93-101
    • /
    • 2015
  • This paper provides numerical results of the simulation for the flow around the hull and the propeller of KCS model ship advancing in shallow water conditions. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes(RANS) equations, where the wave-making problem is solved by using a volume-of-fluid(VOF) method. The wave formed near the hull surface in shallow water conditions shows a deep trough dominant pattern that causes the loss of buoyancy followed by hull squat. The flow past the hull increases as the depth of water decreases. However, the axial flow velocity around the stern shows a reduction in magnitude by the effect of shallow water accompanied by the hull-propeller interaction. As a results, the thrust and torque coefficient increase about 8.3% and 6.2%, respectively for a depth of h/T=3.0 corresponding to a depth Froude number of $F_h=0.693$. The resistance coefficient increases about 11.6% at this Froude number condition.

Potential How Analysis for a Hull with the Transom Stern (트랜섬 선미를 가지는 선형의 포텐셜 유동해석)

  • 최희종;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This study focuses on the potential flow analysis for a hull with the transom stern. The method is based on a low order panel method. The Kelvin type free-surface boundary condition which is known to better fit experimental data for a high speed is applied. To treat a dry transom stern effect a special treatment for the free-surface boundary condition is adopted at the free-surface region after the transom stern. Trim and sinkage, which are important in high speed ships, are considered by an iterative method. Pressure and momentum approaches are used to calculate the wave resistance. Numerical calculations are performed for Athena hull and these results are compared with the experimental data and also other computational results.

  • PDF

A Study on Resisitance Performance of the Straight-Framed V-Bottom Hull Forms with High Displacement-Length Ratio (고(高) 배수량일장(排水量一長) 비(比) V-형(型) 직선늑골선형(直線肋骨船型)의 추진저항성능(推進抵抗性能)에 관(關)하여)

  • Kyu-Jong,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 1969
  • From viewpoints of over-all ship economy the straight framed V-bottom hull forms with chines are considered to be attractive even for usual commercial vessels, because increments of resistance over that of round hull forms, if any, can be well compensated with reduction in construction cost.[1] To investigate the influences of both prismatic coefficient and chine elevation on resistance performance, three models of straight-framed V-bottom hull forms which are similar to Prof. C. Ridgely-Nevitt's W-18, W-8, and W-20[2],[3] in size and hull form coefficients were tested at the SNU Ship Model Towing Tank for resistance measurements. They are of Cp=0.60, 0.65 and 0.70 and of ${\Delta}/(0.01L)^3=300$. Influence of variation of chine elevation on resistance performance were observed with the test results obtained at normal condition, and at the trimed by the stern by 2% and 4% of $L_{bp}$ at normal condition under same displacement. The hull form characteristics are shown in Table 1, and in Fig. 1, 2, 3, 4 and 5. The test results are shown in Fig 8, 9 and 10 in the form of Cr vs. $V/\sqrt{L}$ curves taking Cp as a parameter for normal condition, trim by the stern in 2% and 4% $L_{bp}$ at normal condition , respectively. Cr vs. $V/\sqrt{L}$ curves taking trim condition as a parameter are also shown in Fig 11, 12 and 13 for Cp=0.60 and 0.70, respectively. The best and the worst trim condition at given $V/\sqrt{L}$ in viewpoint of Cr are plotted for each Cp-value as shown in Fig 14, 15 and 16. From the above results the following conclusions are derived: (1) In general, the resistance performance of the straight-framed V-bottom hull forms are not inferior to those of round hull forms. At a certain range of $V/\sqrt{L}$ the former gives less resistance than the latter. (2) Regarding influences of Cp on Cr, it is observed that, at $V/\sqrt{L}$ less than about 0.925, the greater Cp-value gives the more increment of Cr, and that, at $V/\sqrt{L}$ greater than about 0.925 the smaller Cp-value gives the more increment of Cr. It is also noteworthy that the model of Cp=0.70 has remarkable hump on Cr vs. $V/\sqrt{L}$ curve between $V/\sqrt{L}=0.80$ and 0.90. (3) For higher speed within the test range, the chine elevation having the steeper slope around bow and the easier slope around amidship and stern, refered to watering, give the better results in resistance performance. (4) Assuming the chine elevations adopted for the tested models were not of the best, we would expect further improvement of resistance performance for such form. Hence, a systematic study on chine elevation is very disirable to prepare design data of general purpose for the such hull forms.

  • PDF

A Study on Elastic Shaft Alignment Using Nonlinear Soaring Elements (비선형 베어링 요소를 이용한 탄성 추진 축계정렬에 관한 고찰)

  • Choung, Joon-Mo;Choe, Ick-Heung;Shin, Sang-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.259-267
    • /
    • 2005
  • The effects of hull flexibility on shaft alignment are growing as ship sizes are increased mainly for container carrier and LNG carrier. In order to consider hull flexibility on a propulsion shafting system, standardization of ship service conditions is necessary because hull deformation is continuously variable according to ship service conditions. How to summarize ship service conditions is suggested based on practically applicable four viewpoints : hull, engine, loading and sea status. Effects of the external forces acting on a ship propulsion shafting system are generally commented. Several design criteria regulated by classification societies are pointed at issue which seems to have Insufficient technical background. A qualitative verification is carried out to point out the invalidity of the assumption of effective supporting position. In this work, an elastic nonlinear multi-supporting bearing system is introduced as a key concept of the elastic shaft alignment. Hertz contact theory is proved to be more proper one than projected area method in calculation of the nonlinear elastic stiffness of the bearing, The squeezing and oil film pressure calculations in the long journal bearing like an after stern tube bearing are recognized as a necessary process for elastic shaft alignment design.

A Study on the Ship's Seaworthiness Under the Marine Cargo Insurance Policy (해상적하보험계약의 선박의 감항성담보에 관한 연구)

  • Kim, Jae-Woo
    • The Journal of Information Technology
    • /
    • v.8 no.2
    • /
    • pp.27-42
    • /
    • 2005
  • The S.G. Policy form contains the words "the good ship or vessel called the.....". The words "good ship" mean that the ship is deemed to be seaworthy at the commencement of the voyage and this was very necessary in the day when a separate policy was issued for each voyage. In fact the warranty do seaworthiness still applies to all voyage policies. Nevertheless, the law does not apply an absolute warranty of seaworthiness to a time policy, so a ship is not required to be seaworthy at the time the hull policy is effected. The implied warranty of seaworthiness does not extend to good, for the underwriter is not responsible for their condition, apart fro the action of the perils insured against. The implied warranty of seaworthiness is limited to the vessel herself, and does not extend to a lighter or other craft used to convey the goods to the ship. The underwriters waive any breach of the implied warranties of the seaworthiness of the ship and fitness of the ship to carry the subject-matter insured to destination, unless the assured or their servants are privy to such unseaworthiness of unfitness.

  • PDF

Analysis of added resistance and seakeeping responses in head sea conditions for low-speed full ships using URANS approach

  • Kim, Yoo-Chul;Kim, Kwang-Soo;Kim, Jin;Kim, Yoonsik;Park, Il-Ryong;Jang, Young-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.641-654
    • /
    • 2017
  • The KVLCC2 and its modified hull form were investigated in regular head waves using Unsteady Reynolds Averaged Navier-Stokes (URANS) methods. The modified KVLCC2 (named KWP-bow KVLCC2) is designed for reducing wave reflection from the bow. Firstly, the original KVLCC2 is studied for verification of the present code and methodology and the computed time history of total resistance and 2DOF motions (heave and pitch) for the selected two wave length conditions are directly compared with the results obtained from KRISO towing tank experiment under the identical condition. The predicted added resistance, heave and pitch motion RAOs show relatively good agreement with the experimental results. Secondly, the comparison of performance in waves between KVLCC2 and KWP-bow KVLCC2 is carried out. We confirmed that newly designed hull form shows better performances in all the range of wave length conditions through both the computation and the experiment. The present URANS method can capture the difference of performance in waves of the two hull forms without any special treatment for short wave length conditions. It can be identified that KWP-bow KVLCC2 gives about 8% of energy saving in sea state 5 condition.