• Title/Summary/Keyword: Ship collisions

Search Result 146, Processing Time 0.022 seconds

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Basic Research for the Development of Collision Risk Model of Passing Vessels at an Anchorage (Safety Domain) (정박지 통항선박의 충돌위험 모델 개발을 위한 기초연구 - 정박지 통항선박의 안전 -)

  • Lee, Jin-Suk;Kwon, Yumin;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • The purpose of this study is to obtain a safe area for a passing vessel between anchored vessels by developing a model to predict the collision risk, frequent collisions occur between the anchored vessel and the passing vessel through the anchorage. For this, this study selected the southern anchorage of Busan port, which is the largest harbor in Korea, as the target area and extracted and analyzed VTS (Vessel Traffic Service) data during the period in which anchored vessels were the most waited. The ratio of D/L for each bearing was obtained to determine the safe distance (D) passes based on the length (L) of the passing vessel between anchored vessels. Based on the average domain of the D/L ratio distribution, the percentage of anchored vessels within the scope of the pre-studied ship's domain was analyzed to obtain a domain reflecting the degree of risk of VTSOs. Further research will evaluate and analyze the collision risk of a passing vessel using Domain-watch, the minimum safe distance between anchored vessels, and the safe domain of a passing vessel through anchorage, to develop a model for VTS to manage anchorages more efficiently and safely.

Individual Ortho-rectification of Coast Guard Aerial Images for Oil Spill Monitoring (유출유 모니터링을 위한 해경 항공 영상의 개별정사보정)

  • Oh, Youngon;Bui, An Ngoc;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1479-1488
    • /
    • 2022
  • Accidents in which oil spills occur intermittently in the ocean due to ship collisions and sinkings. In order to prepare prompt countermeasures when such an accident occurs, it is necessary to accurately identify the current status of spilled oil. To this end, the Coast Guard patrols the target area with a fixed-wing airplane or helicopter and checks it with the naked eye or video, but it was difficult to determine the area contaminated by the spilled oil and its exact location on the map. Accordingly, this study develops a technology for direct ortho-rectification by automatically geo-referencing aerial images collected by the Coast Guard without individual ground reference points to identify the current status of spilled oil. First, meta information required for georeferencing is extracted from a visualized screen of sensor information such as video by optical character recognition (OCR). Based on the extracted information, the external orientation parameters of the image are determined. Images are individually orthorectified using the determined the external orientation parameters. The accuracy of individual orthoimages generated through this method was evaluated to be about tens of meters up to 100 m. The accuracy level was reasonably acceptable considering the inherent errors of the position and attitude sensors, the inaccuracies in the internal orientation parameters such as camera focal length, without using no ground control points. It is judged to be an appropriate level for identifying the current status of spilled oil contaminated areas in the sea. In the future, if real-time transmission of images captured during flight becomes possible, individual orthoimages can be generated in real time through the proposed individual orthorectification technology. Based on this, it can be effectively used to quickly identify the current status of spilled oil contamination and establish countermeasures.

Analysis of the Legal Blind Sectors of the Large-Scale Offshore Wind Farms of Korea and Proposal to Improve Safety Management (대규모 해상풍력발전단지의 안전관리를 위한 법적 사각지대 분석 및 개선 제안)

  • Inchul Kim;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.127-138
    • /
    • 2023
  • A variety of decarbonized energy sources are being developed globally to realize carbon neutrality (Net Zero) by 2050 as a measure to address the global climate crisis. As the Korean government has also established a Renewable Energy 3020 policy and promoted energy development plans using solar or wind power, large-scale offshore development projects not present before in coastal waters, such as offshore wind farms, are being promoted. From ships' point of view, offshore facilities present obstacles to safe navigation, and with the installation of marine facilities, ship collisions or contact accidents between ships and marine facilities may occur in the narrowed water areas. In addition, there are concerns about environmental pollution and human casualties caused by marine accidents. Accordingly, we review overseas and domestic offshore wind farm development plans, analyze whether institutional devices are in place to ensure the safe passage of ships in wind farm areas, and study the safe operation of large-scale offshore wind farms and safe passage of ships along the Korean coast by comparing overseas legislative cases with domestic laws and presenting a proposal to illuminate the legal blind sectors.

Study on the Establishment of the Separation Distance between Anchored Ships in Jinhae Bay Typhoon Refuge (진해만 태풍 피항지 정박 선박간 이격거리 설정에 관한 연구)

  • Won-Sik Kang;Ji-Yoon Kim;Dae-Won Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.338-347
    • /
    • 2023
  • Jinhae Bay, characterized by frequent runaway ships and strong winds during typhoon attacks, poses a high risk of maritime accidents such as ship collisions and groundings. This study aims to determine a safe separation distance between ships in the Jinhae Bay anchorage, considering the unique environmental characteristics of the Korean sea area. Analysis revealed that an average of 100-200 ships anchor in the typhoon avoidance area in Jinhae Bay during typhoon attacks, with approximately 70% of ships experiencing anchor dragging owing to strong external forces exceeding 25 m/s wind speeds. In this study, we analyzed and presented the separation distances between ships during anchoring operations based on domestic and international design standards, separation distances between ships used as actual typhoon shelters in Jinhae Bay, and appropriate safe distances for ships drifting under strong external forces. The analysis indicated that considering the minimum criteria based on the design standards and emergency response time, a minimum safe distance of approximately 400-900 m was required. In cases where ample space was available, the separation distance was recommended to be set between 700 to 900 m. The findings of this study are anticipated to contribute to the development of guidelines for establishing safe separation distances between ships seeking refuge from typhoons in Jinhae Bay in the future.

The Relative Distance in Taking Action for Collision Avoidance Maneuver of the Stand-on Vessel (피항조선시의 유지선 피항개시거리에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.363-371
    • /
    • 1996
  • The Steering and Sailing Rules of International Regulations for Preventing Collisions at Sea now in use direct the best aid - action to avoid collision by the stand - on vessel. But these rules do not refer to the safety relative distance between two vessels when she should take such action. In this paper, the author analyzed the ship's collision avoiding actions from the viewpoint of ship motions and worked out mathematical formulas to calculate the relative distances necessary for taking action to avoid collision. Figuring out the values of maneuvering indices through experiments of 11 actual ships of small, medium, large and mammoth size, the author applied these values to the calculating formulas and calculated the minimum relative distances. The main results are as follows: 1. It was confIrmed that the stand - on vessel should keep the greatest relative distance for taking best aid - action to avoid collision when the cross angle of course was $90^{\circ}$ and near it(70-$90^{\circ}$ ). 2. When the cross angle of course was $90^{\circ}$ , the minimum relative distance of small vessel(GT: 160-650tons) was found to be more than about 6.8 times of her own length, and those of medium(GT : 2,300-3,500tons), large(GT : 22,OOO-62,OOOtons) and mammoth(GT : 91,000-139,000tons) vessels were found to be more than about 9.0 times, about 5.4 times and about 6.8 times of their own lengths. 3. It was confIrmed that collision danger was greater when crossing angle was obtuse than in an acute angle, therefore greater relative distance was to be kept by the stand - on vessel for taking best aid - action to avoid collision in the case of the obtuse angle. 4. In every vessels, in the case of $90^{\circ}$ cross angle of course the safety minimum relative distance was found to be more than about 9.0 times of their own lengths.

  • PDF