• Title/Summary/Keyword: Ship collision avoidance model

Search Result 49, Processing Time 0.027 seconds

A Study on the Application of Variable Safe-Guard Ring for the Ship Collision Avoidance in Shallow Water (천수역에서 충돌회피를 위한 가변안전경계영역 적용에 관한 연구)

  • Yang, Hyoung-Seon;Ahn, Young-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • The ship's maneuverability is the important factor to avoid ship's collisions. The ship's maneuverability is usually measured in a deep water, and the turning ability is decreased and the course stability is improved in a shallow water. The variation of the turning ability could cause the risk of collision. In this paper, we proposes application technique of Variable Safe-Guard Ring to consider the shallow water effect and to be simple to estimate the grade of collision risk simultaneously. Through the mathematical simulation, the availability of new method was varified. Therefore this method is expected enough to support a maneuver for collision avoidance.

  • PDF

Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance (자율운항선박의 선회특성이 충돌회피에 미치는 영향)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.298-305
    • /
    • 2021
  • Identifying the effect of turning characteristics on collision avoidance for Maritime Autonomous Surface Ships (MASS) can provide a key to avoid the collision of MASS. The purpose of this study was to derive a method to identify the effect of turning characteristics, which can be changed by various rudder angles and the ship's speed, on collision avoidance. The turning circle was observed using a mathematical model of a 161-meter-long ship, and it was analyzed that the turning circle had an effect on collision avoidance through numerical simulations of collision avoidance for four collision situations of two ships. The evaluation results using the two variables, the minimum relative distance between two ships and the minimum time at the minimum relative distance, demonstrated that the rudder angle has a major influence on the change of the minimum relative distance, and the ship's speed has a major influence on the change of the minimum time. The evaluation method proposed in this study was expected to be applicable to collision avoidance as a measures in remote control of MASS.

The Study on Development of Intergrated Ship's Traffic Flow Simulation Model based on Collision Avoidance Function (피항판단평가함수를 고려한 선박교통흐름 통합프로그램의 구축에 관한 연구)

  • Seong, Yu-Chang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.101-106
    • /
    • 2010
  • Marine transportation system plays an important role in maintaining and promoting economic activities among countries. The accurate understanding of marine traffic flows are necessary for the further advancement of marine transportation system. While many existing researches on marine traffic have been conducted mainly on the basis of statistical analysis using traffic data, ship's traffic flow simulation model was developed in this study. A collision avoidance algorithm was conducted with categorizing of traffic factors such as ship's length and speed. The developed model was also verified by a simulation process.

Event-Triggered NMPC-Based Ship Collision Avoidance Algorithm Considering COLREGs (국제해상충돌예방규칙을 고려한 Event Triggered NMPC 기반의 선박 충돌 회피 알고리즘)

  • Yeongu Bae;Jaeha Choi;Jeonghong Park;Miniu Kang;Hyejin Kim;Wonkeun Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.155-164
    • /
    • 2023
  • About 75% of vessel collision accidents are caused by human error, which causes enormous economic loss, environmental pollution, and human casualties, thus research on automatic collision avoidance of vessels is being actively conducted. In addition, vessels must comply with the COLREGs rules stipulated by IMO when performing collision avoidance with other vessels in motion. In this study, the collision risk was calculated by estimating the position and velocity of other vessels through the Probabilistic Data Association Filter (PDAF) algorithm based on RADAR sensor data. When a collision risk is detected, we propose an event-triggered Nonlinear Model Predict Control (NMPC) algorithm that geometrically creates waypoints that satisfy COLREGs and follows them. To verify the proposed algorithm, simulations through MATLAB are performed.

A Modification of the Approach to the Evaluation of Collision Risk Using Sech Function

  • Jeong, Tae-Gwoen;Chao, Chen
    • Journal of Navigation and Port Research
    • /
    • v.31 no.2
    • /
    • pp.121-126
    • /
    • 2007
  • Evaluation of collision risk plays a key role in developing the expert system of navigation and collision avoidance. This paper presents a new collision risk model formula that is one modification model on the basis of one approach to the evaluation of collision risk using sech function produced in earlier studies. And as a tool of the evaluation field of ship collision, this paper applied the new model in appraising the collision risk and represented how to decide the safe range of own ship's action. Moreover this paper also analyzed theoretically how to determine the coefficients as described in the new modification model, and suggested the appropriate values as applicable.

Automatic Control for Ship Collision Avoidance Support-II (선박충돌회피지원을 위한 자동제어-II)

  • Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • The purpose of this study is to examine the algorithm of ship collision avoidance system and to improve its performance. The study on the algorithm of ship collision avoidance system have been carried out by many researchers. We can divide the study according to the adopted theory into two category such as 'collision risk calculation method' and 'risk area method'. It is not so difficult to find heir merit and demerit in the respective method. This study suggested newly modified model, which can overcome a limit in the two method. The suggested model is based on collision risk calculation method and suggests how to solve the threshold value problem, that is, one of the unsolved issues in collision risk calculation method. To solve that problem this study proposed new system under which the users can select appropriate threshold value according to environments such as traffic situations and weathers conditions. Simulation results of new model is schematized using 'risk area method'to examine the relationships between the two method. In addition, in case of 'collision risk method', when TCPA and DCPA are used to determine collision risk, a problem happens, that is, two ships become too close in their stem area, therefore, partial function of 'risk area method'is adopted to solve the problem in suggested model.

Study on the Human Error Prevention Collision Avoidance Model using Merchant Ship Collision Accident Analysis (상선 충돌사고 분석을 이용한 인적과실 예방 충돌회피모델 연구)

  • Kim, Do-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.918-927
    • /
    • 2022
  • The purpose of this study was to investigate the causes of collisions by examining 668 cases of merchant ship collision accidents that occurred during the past 12 years (2010-2021) and analyzed them statistically. Further, the analysis results were applied to propose a human error prevention collision avoidance (HEPCA) model. The statistical annual report of the Korea Maritime Safety Tribunal (KMST) and the collision investigation report were investigated to collect data on the causes of collisions of merchant ships, and frequency analysis was performed using the statistical analysis tool, SPSS Statistics. In the first-stage analysis, the causes of collisions were analyzed targeting 668 merchant ship collision accidents, and in the second-stage analysis, the identified maximum frequency cause factors were analyzed in detail. The analysis results identified that 98 % of the cause of the collision was the human error of the navigator, and the highest frequency was in the order of neglect of look-out > violation of navigation regulations > improper maneuvering. The cause of the neglect of look-out was mainly neglecting continuous monitoring after the first recognition of the target ship. The HEPCA model for human error prevention was proposed by applying the analysis results to the collision case of the investigation report. The results of this study are expected to be used as educational materials at marine navigator educational institutions and in practice for avoiding collisions caused by human errors of navigators.

A Modification of the Approach to the Evaluation of Collision Risk Using Sech Function

  • Jeong, Tae-Gweon;Chao, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.83-88
    • /
    • 2006
  • Evaluation of collision risk plays a key role in developing the expert system of navigation and collision avoidance. This paper presents a new collision risk model formula that is one modification model on the basis of one approach to the evaluation of collision risk using sech function produced by Prof. Jeong in his relevant $articles^{[2][3][4][5]}$. And as a grope in collision risk evaluation field, this paper applied the new model in appraising the collision risk, suggested how to decide the safe range of own ship’'s action. Moreover this paper also analyzed theoretically how to determine the coefficients as describes in the new modification model formula, and suggested the appropriate values as applicable.

  • PDF

A Study on the Automatic Control for Collision Avoidance of the Ships (선박의 충돌회피를 위한 자동제어에 관한 기초적 연구)

  • Lee, Seung-Keon;Kwon, Bae-Jun
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • The collisions of vessel at sea show high among the whole marine accidents. Especially, the accidents of fishing vessels take the largest portion of the collisions. Therefore, a technique to reduce these accidents should be developed. The automatic control for avoiding collision suggested in this study consists of two steps. The first is recognizing collision risk with fuzzy Theory and the other is maneuvering the model ship on the basis of collision risk calculated from the first step. The information form the position and estimated time of collision point(DCPA and TCPA) is used to assess the collision risk. To verify this system, a fishing vessel was simulated according to MMG mathematical model. The simulations result shows quite good application in avoiding the collision of ship.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.