• Title/Summary/Keyword: Ship collision

Search Result 497, Processing Time 0.032 seconds

The Marine Safety Judgment Management System for Scientific Investigation and Analysis of Marine Accidents (해양사고의 과학적인 수사 및 분석을 위한 해양안전심판관리 시스템)

  • Kim, Jeong-Rok;Jong, Jae-Yong;Im, Nam-Kyun;Kim, Chol-Seong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.9-13
    • /
    • 2006
  • In the marine accidents judgment, investigation of truth of matters is one of important process to find out the reason of ship collision accidents. In this paper, reproduce system of ship collision accidents using ship manoeuvirng simulator technique will be introduced with which marine accidents can be easily reproduced in visual display at the case of marine accidents trial. In this system if the users select the type of ship and location of accidents, the process of ship collision will be provided in 2D and 3D display. The system also provides environmental visualizationdisplay such as fog whether and day-night view including various view angle that can be helpful to find out the reason of accidents.

  • PDF

Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance (자율운항선박의 선회특성이 충돌회피에 미치는 영향)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.298-305
    • /
    • 2021
  • Identifying the effect of turning characteristics on collision avoidance for Maritime Autonomous Surface Ships (MASS) can provide a key to avoid the collision of MASS. The purpose of this study was to derive a method to identify the effect of turning characteristics, which can be changed by various rudder angles and the ship's speed, on collision avoidance. The turning circle was observed using a mathematical model of a 161-meter-long ship, and it was analyzed that the turning circle had an effect on collision avoidance through numerical simulations of collision avoidance for four collision situations of two ships. The evaluation results using the two variables, the minimum relative distance between two ships and the minimum time at the minimum relative distance, demonstrated that the rudder angle has a major influence on the change of the minimum relative distance, and the ship's speed has a major influence on the change of the minimum time. The evaluation method proposed in this study was expected to be applicable to collision avoidance as a measures in remote control of MASS.

A Study on Factors that Trigger Human Errors Related to Causes of Ship Collisions (선박충돌사고 원인과 관련된 인적과실 유발요인에 관한 연구)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.801-809
    • /
    • 2017
  • The purpose of this study is to contribute to the prevention of ship collisions by investigating real ship collision cases and statistically analyzing causes of human error for captains and Officers of the Watch (OOW). This study encompassed a total of 109 cases for 218 vessels, which were suitable for the analysis of ship accidents between merchant ships or merchant ships and fishing boats over the 7 years from 2010 to 2016. Data was collected while classifying vessels according to type, Give-way and Stand-on vessels, along with the cause of human error. Factors causing human error were identified after focusing on the cause of each collision given by the OOW ; frequency and cross tabulation analyses were conducted using SPSS, a statistical analysis tool. As a result, the main causes of human error by an OOW in a ship collision situation were that lookout was neglected in a Give-way vessel including radar surveillance (74.3 %) or continuous observation of an opponent vessel was carried out (17.4 %). A major factor for Stand-on vessels was failure to act to avoid collision with another vessel (63.3 %). In particular, most neglect for lookout type merchant ships occurred after the opponent ship was first observed, and a common cause of lookout neglect and neglect of duty was a focus on other tasks during navigational watch time.

A Study on Mariners' Standard Behavior for Collision Avoidance (3) - Modeling of the execution process of an avoiding action based on human factors -

  • Park, Jung-Sun;Kobayashi, Hiroaki;Yea, Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.4
    • /
    • pp.279-285
    • /
    • 2008
  • We have proposed modeling methods of mariners' standard behavior for collision avoidance by analyzing mariners' recognition process in a previous study. As a subsequent study, the aim of this study is to build a model of mariners' execution process which is one of six processes in the condition of collision avoidance. In this study, thus, the structure of mariners' information processing on the process of taking avoiding actions is described and the relation between mariners' behavior and necessary factors in the process is analyzed. And then we have built a model of mariners' standard behavior for execution process based on the characteristics of mariners in ship-handling, which are obtained from the international collaborative research on human factors. It is tried to define the contents of execution process based on the standard behavior of mariners for collision avoidance and to formulate information processing of mariners.

Study on the Evaluation of Ship Collision Risk based on the Dempster-Shafer Theory (Dempster-Shafer 이론 기반의 선박충돌위험성 평가에 관한 연구)

  • Jinwan Park;Jung Sik Jeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.462-469
    • /
    • 2023
  • In this study, we propose a method for evaluating the risk of collision between ships to support determination on the risk of collision in a situation in which ships encounter each other and to prevent collision accidents. Because several uncertainties are involved in the navigation of a ship, must be considered when evaluating the risk of collision. We apply the Dempster-Shafer theory to manage this uncertainty and evaluate the collision risk of each target vessel in real time. The distance at the closest point approach (DCPA), time to the closest point approach (TCPA), distance from another vessel, relative bearing, and velocity ratio are used as evaluation factors for ship collision risk. The basic probability assignments (BPAs) calculated by membership functions for each evaluation factor are fused through the combination rule of the Dempster-Shafer theory. As a result of the experiment using automatic identification system (AIS) data collected in situations where ships actually encounter each other, the suitability of evaluation was verified. By evaluating the risk of collision in real time in encounter situations between ships, collision accidents caused by human errora can be prevented. This is expected to be used for vessel traffic service systems and collision avoidance systems for autonomous ships.

Automatic Control for Ship Collision Avoidance Support-II (선박충돌회피지원을 위한 자동제어-II)

  • Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • The purpose of this study is to examine the algorithm of ship collision avoidance system and to improve its performance. The study on the algorithm of ship collision avoidance system have been carried out by many researchers. We can divide the study according to the adopted theory into two category such as 'collision risk calculation method' and 'risk area method'. It is not so difficult to find heir merit and demerit in the respective method. This study suggested newly modified model, which can overcome a limit in the two method. The suggested model is based on collision risk calculation method and suggests how to solve the threshold value problem, that is, one of the unsolved issues in collision risk calculation method. To solve that problem this study proposed new system under which the users can select appropriate threshold value according to environments such as traffic situations and weathers conditions. Simulation results of new model is schematized using 'risk area method'to examine the relationships between the two method. In addition, in case of 'collision risk method', when TCPA and DCPA are used to determine collision risk, a problem happens, that is, two ships become too close in their stem area, therefore, partial function of 'risk area method'is adopted to solve the problem in suggested model.

Study on the Estimation of Collision Risk of Ship in Ship Handling Simulator using Environmental Stress Model (시뮬레이터 기반 환경스트레스를 이용한 선박 충돌위험도 추정에 관한 연구)

  • Son Nam-Sun;Gong In-Young;Kim Sun-Young;Lee Chang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.73-80
    • /
    • 2004
  • Recently, many maritime accidents have been increased and the collisions due to human error are given a great deal of proportions out if them We develop the Real-time Collision Risk Monitoring System (CRMS) for the navigational officers to cope with the emergency situation promptly and thus to reduce the probability if casualty. In this study, the risk of collision is evaluated by two kinds if method. The first method is based on Fuzzy algorithm, which evaluates the risk of collision between traffic ships. The second method is based on Environmental Stress (ES) Model, where the total risk if collision is evaluated by the environmental stress felt by human. The developed real-time CRMS has been installed to the ship handling simulator system and its capabilities have been tested through simulator experiments.

  • PDF

Study on the Estimation of Collision Risk of Ship in Ship Handling Simulator using Fuzzy Algorithm and Environmental Stress Model (시뮬레이터 기반 퍼지알고리즘과 환경스트레스모델을 이용한 선박 충돌위험도 추정에 관한 연구)

  • Son, Nom-Sun;Kim, Sun-Young;Gong, In-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Recently, many maritime accidents have been increased and the collisions due to human error are given a great deal of proportions out of them We develop the Real-time Collision Risk Monitoring System (CRMS) for the navigational officers to cope with the emergency situation promptly and thus to reduce the probability of casualty. In this study, the risk of collision and grounding is evaluated by two kinds of method. The first method is based on Fuzzy algorithm, which evaluates the risk of collision between traffic ships. The second method is based on Environmental Stress (ES) Model, where the total risk of collision and grounding is evaluated by the environmental stress felt by human. The developed real-time CRMS has been installed to the ship handling simulator system and its capabilities have been tested through simulator experiments.

A Study on Development of Expert System for Collision Avoidance and Navigation(I): Basic Design

  • Jeong, Tae-Gwoen;Chen, Chao
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.529-535
    • /
    • 2008
  • As a method to reduce collision accidents of ships at sea, this paper suggests an expert system for collision avoidance and navigation (hereafter "ESCAN"). The ESCAN is designed and developed by using the theory and technology of expert system and based on the information provided by AIS and RADAR/ARPA system. In this paper the ESCAN is composed of four(4) components; Facts/Data Base in charge of preserving data from navigational equipment, Knowledge Base storing production rules of the ESCAN, Inference Engine deciding which rules are satisfied by facts or objects, User System Interface for communication between users and ESCAN. The ESCAN has the function of real--time analysis and judgment of various encountering situations between own ship and targets, and is to provide navigators with appropriate plans of collision avoidance and additional advice and recommendation This paper, as a basic study, is to introduce the basic design and function of ESCAN.

A Study on the Approaching Distance in Taking Action to Avoid Collision (피항동작시의 한계접근거이에 관한 연구)

  • 윤점동;박선규
    • Journal of the Korean Institute of Navigation
    • /
    • v.6 no.1
    • /
    • pp.41-59
    • /
    • 1982
  • In the Sailing Rules of International Regulation for Preventing Collisions at Sea, 1972, any definite distance between two vessels approaching each other is not referred for adequate maneuvering to avoid collision. At sea the officer in charge of bridge duty is required to guess safe distance before he takes maneuvering actions needed to avoid collision. Papers on safe distances calculated on the base of the motiional characteristics of ships for collision avoiding actions are very few. In this paper, the minimum safe approaching distances necessary for actions to be taken to avoid collision are calculated in numerical numbers definitely by mathematic formula based on the maneuvering indices got from experiments of actual ships. On the assumption that two vessels same in size and conditions are approaching each other, the author calculated the minimum safe approaching distance as 4.5 times, sufficient safe approaching one as 9.0 times the length of the ship involved in head-on situation and 5.0 times, 10 times respectively the length of the ship in each case mentioned above in crossing situation.

  • PDF