• Title/Summary/Keyword: Ship calculation

Search Result 543, Processing Time 0.02 seconds

A Study on the Motion Sickness Incidence due to Sea State and Location of the Training Ship Kaya (실습선 가야호의 해상상태와 선내 위치에 따른 뱃멀미 지수에 관한 연구)

  • Han, Seung-Jae;Ha, Young-Rok;Kim, Jong-Hwa;Lee, Jong-Gun;Kim, In-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.1
    • /
    • pp.126-133
    • /
    • 2014
  • For boarding comfort and pleasant boarding sensitivity of passenger in passenger ship, there are a few methods such as motion sickness rate or MSI(Motion Sickness Incidence) to assess safety of passenger ship. To find out MSI or motion sickness rate of the training vessel Kaya of Pukyong National University, we use lots of various factors: sea condition, incident angle in main sail way, economic speed, calculation position of motion sickness, sea state, work place and reduce zone of ship. In this paper, we adopted Maxsurf Seakeeper program based on Strip Theory and carefully compared theoretical results with experimental results.

Calculation of 4 Crane Lifting Forces for a Sunken Ship (4기 크레인에 의한 첨물 선체의 인양력 계산)

  • 이상갑
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • This study focuses on a simple analytical approach to calculate crane lifting forces for a sunken ship. The method takes into account the relation of lifting forces acting in wire rope slings to the inclination of the vessel including the effect of lug positions. The importance of the sunken ship salvage is explained from the statistics of ship casualties during last 15 years. Euler angles are introduced to represent the inclination of a sunken ship in developing the static force and moment equations,. Three dimensional examples with one redundant degree of freedom for a GT1500 oil tanker are analyzed and the results show that the information obtained by the method could be useful to salvors to conduct salvage work.

  • PDF

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

Extension of Guilloton's Method for the Calculation of Wave-making Resistance and Velocities at the Vicinity of a Ship Hull(1st Report)

  • D.K.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.19-26
    • /
    • 1984
  • Guilloton's wedge method is extended to evaluated velocity components on and around a ship hull. A ship is divided into a number of layers each of which is approximated by the superposition of so many wedges. These wedges start from the stations evenly placed along the length of the ship. The Michell potential is used to obtain the field generating properties of a wedge. The derivatives of this potential represent then the velocity components induced by the wedge. Superposition of velocities induced at a fixed field point by all the wedges placed at the appropriate positions to approximate the hull will result in the velocity associated with the ship at a particular speed.

  • PDF

Quadratic strip theory for high-order dynamic behavior of a large container ship with 3D flow effects

  • Heo, Kyeong-uk;Koo, Weoncheol;Park, In-Kyu;Ryue, Jungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • Springing is the resonance phenomenon of a ship hull girder with incoming waves having the same natural frequency of the ship. In this study, a simple and reliable calculation method was developed based on quadratic strip theory using the Timoshenko beam approach as an elastic hull girder. Second-order hydrodynamic forces and Froude-Krylov forces were applied as the external force. To improve the accuracy of the strip method, the variation in the added mass along the ship hull longitudinal direction, so called tip-effect, was considered. The J-factor was also employed to compensate for the effect of three-dimensional fluid motion on the two-node vibration of the ship. Using the developed method, the first- and second-order vertical bending moments of the Flokstra ship were compared. A comparative study was also carried out for a uniform barge ship and a 10,000 TEU container ship with the respective methods including the J-factor and tip-effect.

Prediction Method for Linear Maneuvering Hydrodynamic Derivatives Using Slender Body Theory Based on RANS (RANS 기반의 세장체 이론을 이용한 선형 조종 유체력 미계수 추정에 관한 연구)

  • Lee, Sungwook
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.340-345
    • /
    • 2017
  • It is important to predict the hydrodynamic maneuvering derivatives, which consist of the forces and moment acting on a hull during a maneuvering motion, when estimating the maneuverability of a ship. The estimation of the maneuverability of a ship with a change in the stern hull form is often performed at the initial design stage. In this situation, a method that can reflect the change in the hull form is necessary in the prediction of the maneuverability of the ship. In particular, the linear hydrodynamics maneuvering derivatives affect the yaw checking motion as the key factors. In the present study, static drift calculations were performed using Computational Fluid Dynamics (CFD) based on Reynolds Average Navier-Stokes (RANS) for a 40-segment hull. A prediction method for the linear hydrodynamic maneuvering derivatives was proposed using the slender body theory from the distribution of the lateral force acting on each segment of the hull. Moreover, the results of a comparison study to the model experiment for KVLCC1 performed by KRISO are presented in order to verify the accuracy of the static drift calculation. Finally, the linear hydrodynamic maneuvering derivatives obtained from both the model test and calculation are compared and presented to verity the usefulness of the method proposed in this study.

Development of paint area estimation software for ship compartments and structures

  • Cho, Doo-Yeoun;Swan, Sam;Kim, Dave;Cha, Ju-Hwan;Ruy, Won-Sun;Choi, Hyung-Soon;Kim, Tae-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.198-208
    • /
    • 2016
  • The painting process of large ships is an intense manual operation that typically comprises 9-12% of the total shipbuilding cost. Accordingly, shipbuilders need to estimate the required amount of anti-corrosive coatings and painting resources for inventory and cost control. This study aims to develop a software system which enables the shipbuilders to estimate paint area using existing 3D CAD ship structural models. The geometric information of the ships structure are extracted from the existing shipbuilding CAD/CAM system and used to create painting zones. After specifying the painting zones, users can generate the paint faces by clipping structural parts inside each zone. Finally, the paint resources may be obtained from the product of the paint areas and required paint thickness. Implementing the developed software system to real shipbuilders' operations has contributed to improved productivity, faster resource estimation, better accuracy, and fewer coating defects over their conventional manual calculation methods for painting resource estimation.

A Study on the Simplified Prediction Method of Air Resistance for Towing Force Calculation of Disabled Ships (사고선박 예인력 계산을 위한 공기저항 간편 추정법 연구)

  • Kim, Eun-Chan;Choi, Hyuek-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.198-204
    • /
    • 2014
  • Ships sailing the seas encounter air resistance. The air resistance depends on the shape of the above-water hull, the ship speed, the wind speed and wind direction. The experimental or statistical methods which are used to predict the air resistance are one of the essential procedures of the calculation of the towing force of the disabled ships. This paper shows simplified air resistance prediction method using the variables of the projected area of the above-water hull, the speed of the ship, the wind speed and its direction. These methods have been applied to the existing computer program which had been set up to predict the towing force of the disabled ships.

Numerical Calculation of Viscous Flows for Two HSVA Tankers (HSVA 두 탱커 선형에 대한 점성유동 계산)

  • Kwak, Young-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.138-146
    • /
    • 1999
  • The viscous flow around a ship hull is calculated by the use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stresses are midelled by using the k-${epsilon}$ turbulence model and the law is applied near the body. Body fitted corrdinates are introduced for the treatment of the complex boundary of the ship hull form and the governing equations in the physical domain transformed into ones in the computational domain. The transformed equations are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implicit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the sidcretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). To assure the proprietty of this computing method, HSVA tanker and Dyne hull are calculated ar both model and ship scale Reynolds number. Their reaults of pressure distributions on fore and aft body, axial velocity contours and transverse velocity velocity vectors and viscous resistance coefficients are compared with other's experiments and calculations.

  • PDF

Development of an Evacuation Time Calculation Program for Passenger Ships Based on IMO Guidelines, MSC.1/Circ.1238 (IMO 피난지침 기반의 여객선 탈출시간 계산 프로그램 개발)

  • Choi, Jin;Kim, Soo-Young;Shin, Sung-Chul;Kang, Hee-Jin;Park, Beom-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.719-724
    • /
    • 2010
  • Thousands of passengers and crews are onboard a cruise ship and there are many cabins and large public spaces such as atria and theaters. Therefore it is easy to cause a huge loss of life and damage to property when accidents happen at sea. To improve the safety of passenger ships, in October 2007, IMO proposed MSC.1/Circ.1238 on guidelines for evacuation analysis and recommended its use. However, this guideline is difficult to apply because ship designers need to get many pieces of information from CAD drawings such as width and length of stairs and corridors and manually calculate the evacuation time. In this paper, for practical application of the guidelines, an evacuation time calculation program is developed using AutoCAD .NET API library and C Sharp language.