• 제목/요약/키워드: Ship calculation

검색결과 541건 처리시간 0.024초

손상된 선박의 구난 기술 및 안전 예항에 관한 연구(1) - 손상시의 선체 자세 및 잔존 복원성 평가법 - (A Study on Rescue Technique and Safe Tow of Damaged Ship(1) - Prediction of Final Drafts and Residual Stability of Ship in Damage -)

  • 손경호;이상갑;최경식;안영규;김윤수
    • 한국항해학회지
    • /
    • 제21권3호
    • /
    • pp.83-90
    • /
    • 1997
  • Damage stability is generally very important as a part of rescue technique of damaged ship and also in connection with the requirements of MARPOL73/78[2]. Damage stability calculation program has been developed and suggest, which can be used on an onboard computer for any operating drafts. The program is based on lost buoyancy method for calculation of final drafts, and also based on added mass method for calculation of residual righting arm. The numerical method suggested by Hamamoto-Kim[6] is adopted for calculation of intact righting arm(GZ). The model experiments on damage stability are also carried out in a small tank with tanker model 2.385 meters long. The experimental results are compared with the calculations by the suggested method.

  • PDF

逐次揷間法에 依한 船型의 數値表現法에 關하여 (Representation of Hull Form by Aitken's Iterative Interpolation Methods)

  • 김효철;양영순
    • 대한조선학회지
    • /
    • 제14권3호
    • /
    • pp.1-4
    • /
    • 1977
  • The computer aided ship design and construction has become very popular one in a ship yard recently. For one of such a purpose a program is developed with Aitken's iterative interpolation method. From the sample calculation we can conclude that the program has a reliable acquracy for the calculation of hydrostatic data or loading manual. And also the program can be applicable to a ship construction by careful selecting of input data.

  • PDF

Fatigue Assessment of Welded Ship Structures

  • Petershagen, H.
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.15-21
    • /
    • 1997
  • Modern ocean-going vessels are highly dynamically loaded all-welded structures. Traditionally, this fact has been taken into account in the design of ship structures by keeping the overall stress level within permissible limits and by limiting notch effects in the design of local structures. With an improving knowledge of loads and the rapid development of calculation means more detailed calculation-based methods are increasingly introduced. A brief review on fatigue assessment methods used in the design of ship structures has been given during the 1993 IIW International Conference in Glasgow. The rapid development during recent years underlines the importace of the subject and justifies its extended discussion in this paper.

  • PDF

선체 종강도에 관한 연구(I) (A Study on the Longitudinal Strength of the Ship Hull(I))

  • 고윤섭
    • 한국항해학회지
    • /
    • 제8권2호
    • /
    • pp.43-50
    • /
    • 1984
  • When the static load is applied to the ship's hull the deflection due to the bending moment from longitudinal direction has not been considered in the usual calculation of maximum bending moment. In fact, however, the deflection of ship's hull must be affected by the above-stated bending moment, and in this case the value of the maximum bending moment would be lessened in comparision with the result of usual calculation. In this paper, the author at first calculated the difference between the two values in case of rectangular barge, and suggested a practical criterion of longitudinal strength.

  • PDF

주파수 응답해석을 이용한 파랑조건에 따른 어선 자동 조타시스템의 성능평가지수에 관한 연구 (A Study on the Performance Index of Automatic Steering System of Fishing Boat Using Frequency Response Analysis)

  • 이경우;손경호
    • 수산해양기술연구
    • /
    • 제39권1호
    • /
    • pp.1-7
    • /
    • 2003
  • When a ship is course-keeping in the open seas, autopilot system is adapted. The design of autopilot system is very important for improvement of ship′s element research. Automatic steering system consists of autopilot device, power unit, steering gear, magnetic or gyro compass and ship dynamics. In order to evaluate automatic steering system of ships in open seas. we need to know the characteristics of each component of the system, and also to know the characteristics of disturbance to ship dynamics. In this paper, I provide evaluation method of autopilot navigation system of the fishing ship. Prediction method based on the principle of linear superposition is introduced for irregular disturbance. For the evaluation of automatic steering system of a ship, "performance index" is introduced from the viewpoint of energy saving and calculation method is frequency response analysis. Finally, I carried out calculation of sensitivity of control constants of autopilot with various conditions of ocean environments.

선체 횡단면의 전단흐름 계산 프로그램 개발 (Development of Shear Flow Calculation Program for Ship Hull Transverse Section)

  • 노인식;이정렬;우정재;오영택
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.188-194
    • /
    • 2016
  • Accurate estimation of shear flows in thin-walled beam section is the key issue to evaluate shear stress distribution of ship hull transverse section under the shear forces acting on hull girder. It is regarded that the method using the warping functions obtained by finite element formulation is the state of the art of this field. Recently, however, IACS took effect the new version of CSR in which direct calculation process of shear flow was suggested. In the direct calculation process, shear flow of ship hull section can be obtained by the addition of determinate and indeterminate shear flows calculated respectively. So, in this paper, the shear flow evaluation codes based on the process proposed by IACS CSR and warping function based method were developed respectively. The calculated results of shear flows for the several examples of ship sections were compared with each other and considered in detail.

Prediction of Ship Manoeuvrability in Initial Design Stage Using CFD Based Calculation

  • Cho, Yu-Rim;Yoon, Bum-Sang;Yum, Deuk-Joon;Lee, Myen-Sik
    • Journal of Ship and Ocean Technology
    • /
    • 제11권1호
    • /
    • pp.11-24
    • /
    • 2007
  • Better prediction of a ship's manouevrabilty in initial design stage is becoming more, important as IMO manoeuvring criteria has been activated in the year of 2004. In the present study, in order to obtain more exact and reliable results for ship manoeuvrability in the initial design stage, numerical simulation is carried out by use of RANS equation based calculation of hydrodynamic forces exerted upon the ship hull. Other forces such as rudder force and propeller force are estimated by one of the empirical models recommended by MMG Group. Calculated hydrodynamic force coefficients are compared with those obtained by empirical models. Standard manoeuvring simulations such as turning circle and zig-zag are also carried out for a medium size Product Carrier and the results are compared with those of pure empirical models and manoeuvring sea trial. Generally good qualitative agreement is obtained in hydrodynamic forces due to steady oblique motion and steady turning motion between the results of CFD calculation and those of MMG model, which is based on empirical formulas. The results of standard manoeuvring simulation also show good agreement with sea trial results.

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF

측벽근방을 항해하는 대형선박에 미치는 측벽의 영향 (The Interaction Effect Acting on a Ship Hull in the Proximity of Bank Wall)

  • 이춘기;박한일
    • 한국항해항만학회지
    • /
    • 제28권5호
    • /
    • pp.333-337
    • /
    • 2004
  • 측벽과 선박간의 상호 간섭력이 선박 조종 운동에 상당히 크게 작용하는 것은 잘 알려셔 있다. 이 논문에서 측벽 부근을 항해하는 선박에 미치는 측벽의 간섭 영향에 대해서 다루어지고, 선박과 측벽간의 간섭력 추정을 위해 세장체 이론을 토대로 학 계산 방법이 적용되며, 선박 조종 운동에 미치는 측벽의 영향을 파악하기 위하여 선박과 돌제(반원)형상을 하고 있는 측벽간의 간섭력을 수치 계산하였다. 이 논문에서 사용되어진 계산 방법은 제한수역에서의 충돌 회피를 위한 선박의 자동 세어 시스템과 해상 교통 제어 시스템 및 항만 건설 등을 위한 초기 설계 단계에서 선박 조종성의 예측에 상당히 유용할 것이다

콘테이너선(船)의 파랑중(波浪中) 운동.저항.추진성능(運動.抵抗.推進性能) 연구(硏究) (Ship Motion, Resistance and Propulsive Performance of a Container Ship in Regular Head Waves)

  • 양승일;홍석원;이상무;김은찬
    • 대한조선학회지
    • /
    • 제20권4호
    • /
    • pp.25-32
    • /
    • 1983
  • A series of model testes on a container ship in regular were executed. This paper presents the results of resistance, self-propulsion, and ship motion tests. The experimental results of ship motion measured on a towed model and a self-propelled model were compared with those of Japanese's model test showing fairly good agreements. The results of added resistance tests were compared with those of Japanese' model test and also compared with the calculation results by Gerritsma's method showing somewhat large discrepancies at higher speeds. Also the results of added resistance tests measured on a fixed model were compared with the calculation results by Gerritsma's method. Finally the results of self-propulsion tests were presented.

  • PDF