• Title/Summary/Keyword: Ship bridge

Search Result 209, Processing Time 0.025 seconds

A Study on Traffic Supporting System Enhancing the Safe Passage under Sea Bridge for Towing Vessels (예부선의 해상교량 안전통항을 위한 안전운항지원시스템 구축에 관한 연구)

  • Lee, Yun-Sok;Yun, Gwi-Ho;Park, Young-Soo;Kim, Jong-Sung;Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.71-78
    • /
    • 2007
  • Towing vessels have carried out the important role and service in the maritime industry construction, such as port and sea bridge construction, fairway dredging and sea reclamation etc. Furthermore, tugboat takes the largest portion in number of vessel at the domestic registry and barges as big as the general merchant vessel, which are getting specialized and larger, are in operation. In spite of the increase of marine accidents under this situation, there has been no proper measure for the safe navigation of tugboat in the aspect of a nation. This paper aims to propose the measure for the safe navigation of tugboat according to the frequent marine accident of tugboat with sea bridge. Therefore, we show an example of the sailing schedule and operation checklist based on the analysis of statistics and precedent of marine accident and the investigation of the actual operation state of tugboat in the aspect of a contract of carriage and a personnel setup, which should be checked by the operator of tugboat, to pass through sea bridge safely and propose the safe traffic supporting system based on electronic chart system to improve the safe navigation of tugboat.

  • PDF

A Study on the Suggestion of Traffic Supporting System Enhancing the Safe Passage under Sea Bridge for Tugboat (예부선의 해상교량 안전 통항을 위한 안전운항지원시스템 제안)

  • Lee, Yun-Sok;Yun, Gwi-Ho;Park, Young-Soo;Kim, Jong-Sung;Cho, Ik-Soon
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.101-108
    • /
    • 2007
  • Tugboat has carried out the important role and service in the maritime industry construction, such as port and sea bridge construction, fairway dredging and sea reclamation etc. Furthermore, tugboat takes the largest portion in number of vessel at the domestic registry and barges as big as the general merchant vessel, which are getting specialized and larger, are in operation. In spite of the increase of marine accident under this situation, there has been no proper measure for the safe navigation of tugboat in the aspect of a nation. This paper aims to propose the measure for the safe navigation of tugboat according to the frequent marine accident of tugboat with sea bridge. Therefore, we show a example of the sailing schedule and operation checklist based on the analysis of statistics and precedent of marine accident and the investigation of the actual operation state of tugboat in the aspect of a contract of carriage and a personnel setup, which should be checked by the operator of tugboat, pass through sea bridge safely and propose the safe traffic supporting system based on electronic chart system to improve the safe navigation of tugboat.

  • PDF

A Study on Safe Vessel Traffic Speeds Based On a Ship Collision Energy Analysis at Incheon Bridge (인천대교 선박 충돌에너지 분석을 통한 선박의 통항안전 속력에 관한 연구)

  • Lee, Chang-Hyun;Lee, Hong-Hoon;Kim, Deun-Bong;Kim, Chol-Seong;Park, Seong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.593-599
    • /
    • 2016
  • Incheon Bridge is 13.38 km long with an 800 m span, connecting Incheon International Airport and Songdo International City, Per hour 73.8 vessels navigate this space. The purpose of this study was to suggest a safe passing speed based on the displacement of a vessel based on the safety criteria of Incheon Bridge's anti-collision fence, which was designed during its initial construction. As AASHTO LRFD suggested, vessel collision energy, vessel collision velocity, and the hydrodynamic mass coefficient were considered to derive a safe vessel traffic speed. Incheon Bridge's anti-collision fence was designed so that 100,000 DWT vessels can navigate at a speed of 10 knot. This research suggests a safe speed for vessel traffic through a comparative analysis of an experimental ship's (300,000 DWT) speed and cargo conditions, regulation speed has been calculated according to the collision energy under each set of conditions. Additionally, safe traffic vessel's safe speed was analyzed with reference to tidal levels. Results from the experimental ship showed that a vessel of maximum 150,000 DWT is able to pass Incheon Bridge at a maximum of 7 knots with an above average water level, and is able to pass the bridge with a maximum of 8 knots under ballast conditions.

An Implementation of an Intelligent Digital Ship (지능형 디지털 선박의 구현방안)

  • Lim, Yong-Kon;Park, Jong-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.554-561
    • /
    • 2008
  • This paper deals with an intelligent digital ship which aims at development to support economic and safe services through an integration into the hierarchically layered digital signals such as ship's navigation, maneuvering and control signal and establishing a one-man bridge system in order to provide a support systems between ship and land station. This paper introduces the results of the mid-term project sponsored from Ministry of Commerce, Industry and Energy which consists of three sub-project such as INS(Intelligent Navigation System), AIS(Automatic Identification System), and IMIT (Integrated Maritime Information Technology). The INS system that can allow ships to navigate economically and safely through the integration and analysis of national data within the ship. AIS is a system that reports automatically on the location of the ship in order to prevent the collision between ships and between the ship and the land. IMIT is a integrated system for providing an efficient and economic support system between ships and the land and a ship-land platform and technologies.

A Study on Decrease of Vertical Accelerations due to Changes in Location of the Habitation Division for Training Ship (실습선의 거주위치 변경에 따른 수직가속도 저감에 관한 연구)

  • HAN, Seung-Jae;HA, Young-Rok;LEE, Seung-Chul;JEONG, Tae-Yeong;KIM, In-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • Research on ship motion and seasickness is recognized as the important research area to ensure the pleasant operative environment in addition to the research of operation safety of ship. In this paper, the motion performance in waves for the training ship Kaya of Pukyong National University is obtained by using the computer program based on Strip Method. To guarantee the pleasant seafaring in ocean, the vertical acceleration of ship motion is calculated according to the habitation division location in the ship. The results of calculation by changes of location of habitation division are compared with the guideline of MSI(Motion Sickness Incidence). The degree of motion sickness is shown and discussed through the comparison between calculated vertical acceleration spectrum and MSI guideline. To improve the safety of ship in motion and the pleasant seafaring in waves, the downtrend of seasickness ratio is needed by the decrease on vertical acceleration of the ship. Through the results in this paper, the relocation of both bridge and accommodation toward the aftship reduced the vertical acceleration and MSI.

An Investigation of the Noise in Ship Engine-Room and Cabins for Hearing Protection (I) (청력보호를 위한 선박 기관실 및 선실소음의 조사(I))

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.97-103
    • /
    • 1999
  • As the noise of ship engine room is too loud, the engineer who works in a ship engine-room has the trouble of hearing. In this paper deals the investigation of the noise of ship engine room and cabins with the internationally allowable noise exposure level and noise exposure time. Recently, the problem of engine-room noise is more serious because of shipowner wants to make small number and larger size of cylinder. Therefore, engineers work in a ship engine-room for a long time have the trouble of hearing when they are exposed the high noise level. In this study, two kinds of vessels were used to investigate the noise of engine room, engine-control room, bridge, offices and cabins. As criteria of sound levels, A-weighted sound pressure level and octave band pressure level were used.

  • PDF

On a Ship Manoeuvring Simulator Newly Developed by Korea Maritime University

  • Sohn, Kyoung-Ho;Kim, Jin-Kook;Yang, Seung-Yeul
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2002.10a
    • /
    • pp.111-124
    • /
    • 2002
  • Ship manoeuvring simulator has been widely utilized for training mariners, for assessing safety, for developing harbour and port, and for designing ships. We discuss a ship manoeuvring simulator which has been newly developed by Korea Maritime University. The simulator consists of simulator bridge and control console. All the computers used in the simulator are connected with one another by UDP or TCP network system. All the instruments are connected with interface computer by signal line which is controlled by RS232 communication protocol, or by voltage controlled A/D board. Next the mathematical model of ship manoeuvring motion in harbour areas, and ship and terrain modeling technique are also briefly discussed. Finally using the simulator an experiment of distance cognition and a simulation example of berthing/deberthing manoeuvre are shown.

  • PDF

Study on Disaster Prevention System for Long Span Bridge over the Sea (장대해상교량의 방재시스템 구축에 관한 연구)

  • Kong, Byung-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • Bridge types such as the suspension bridges and the cable stayed bridges maintained by cables present the dangerous possibility of a ship running through the bottom of the bridge. Due to hangers and main cables in the upper structural system, the bridge is also susceptible to disasters. However, these cable bridges are usually used for long span bridges over the sea. This structure is relatively more exposed to disasters, such as wind, hail, and earthquake, than other structures. This structure also has the potential to cause car accidents on account of the poor visibility due to foggy conditions. If a fire breaks out because of a car accident due to wind, a car explosion will likely occur.

A Study on the Conceptual Bridge Design based on the Ergonomic Background (인간공학적 선교설계에 관한 기초연구)

  • 하원재;나송진;김상수;이형기;정재용
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • A correctly designed bridge offers improved operational safety in terms of increased vigilance, flexibility of operation, precision of control and operator's situational awareness. According1y to design human centered bridge, the consideration shall be given to the man-machine interface, location and interrelation of workstation, configuration of console, windows. field of vision and bridge working environment. The state-of-the-art suits for one-man operation by integration of conning information and central information presentation. Further, it is desirable to enable two man ship operation for emergency operations, training purposes and redundancy. In this point of view, this thesis would like to design a conceptual bridge.

  • PDF

On the Hull Vibration of the Training Ship Sae-Ba-Da (실습선 새바다호의 선체진동에 관하여)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.3
    • /
    • pp.23-28
    • /
    • 1986
  • This paper describes on the measurement of the deck vibration produced by the main engine vibration of stern trawler MjS SAE-BA-DA (2,275GT, 3,600PS) while the ship is cruising and drifting. The obtained results are as follows; 1. The deck vibration level was the highest point at vertical line which pass main engine and the lowest point at vertical line which pass top bridge while the crusing. 2. The vibration source level of the main engine, screw shaft and screw propeller were respectively 110, 90 and 80% while the crusing. 3. The main deck vibration pressure level at the check points 2, 20, 30, 40, 60, 70, 80, 86m from the bow to stern was respectively 9, 8, 7, 10, 22, 45, 18, 23%. 4. The frequency distributions of the rr.ain engine, screw shaft, screw propeller vibration were from 3 Hz to 10 KHz, predominant frequency was 1 KHz, each vibration accelration the highest level were respectively 1. 3, 0.8, 0.5 $mm/s^2.$ 5. The predominant frequency distributions of the main deck, second deck, bridge deck and top bridge deck-s vibration were from 10 to 30 Hz, and each vibration accelration level were respectively 0.7, 0.05, 0.07, 0.04 $mm/s^2.$

  • PDF