• 제목/요약/키워드: Ship and offshore plant

검색결과 83건 처리시간 0.028초

빅데이터 분석을 이용한 해양 구조물 배관 자재의 소요량 예측 (Estimation of Material Requirement of Piping Materials in an Offshore Structure using Big Data Analysis)

  • 오민재;노명일;박성우;김성훈
    • 대한조선학회논문집
    • /
    • 제55권3호
    • /
    • pp.243-251
    • /
    • 2018
  • In the shipyard, a lot of data is generated, stored, and managed during design, construction, and operation phases to build ships and offshore structures. However, it is difficult to handle such big data efficiently using existing data-handling technologies. As the big data technology is developed, the ship and offshore industries start to focus on the existing big data to find valuable information from it. In this paper, the material requirement estimation method of offshore structure piping materials using big data analysis is proposed. A big data platform for the data analysis in the shipyard is introduced and it is applied to the analysis of material requirement estimation to solve the problems in piping design by a designer. The regression model is developed from the big data of piping materials and verified using the existing data. This analysis can help a piping designer to estimate the exact amount of material requirement and schedule the purchase time.

Parametric study for suggestion of the design procedure for offshore plant helideck subjected to impact load

  • Park, Doo-Hwan;Kim, Jeong-Hyeon;Park, Yong-Jun;Jeon, Jun-Hwan;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.851-873
    • /
    • 2016
  • Helidecks are vital structures that act as a last exit in an emergency. They transport people and goods to and from ships and offshore plants. When designing the structure of a helideck, it is necessary to comply with loading conditions and design parameters specified in existing professional design standards and regulations. In the present study, finite element analysis (FEA) was conducted with regard to a steel helideck mounted on the upper deck of a ship considering the emergency landing of the helicopter. The superstructure and substructure were designed, and the influence of various design parameters was analyzed on the basis of the FEA results.

Motion and Sloshing Analysis for New Concept of Offshore Storage Unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제5권1호
    • /
    • pp.22-28
    • /
    • 2002
  • A New concept for the LNG-FPSO ship, with moonpool and bilge step in bottom, is proposed. This concept is investigated with regard to motion reduction and sloshing phenomena of the cargo and operation tanks. The principal dimensions of the ship are $L\timesb B\times D\times t(design)=270.0\times51.0\times32.32\times13.7(m)$, with a total cargo capacity of 161KT; a 98% loading condition is considered for this study. The moonpools and rectangular step at the bilge have been designed for the purpose of decreasing the motion within the tank. For the motion analysis, linearized three-dimensional diffraction theory, with the simplified boundary condition was used. The six-degree of freedom coupled motion responses were calculated for the LNG-FPSO ship. Viscous effects on the roll motion responses of a vessel were taken into account in this calculation program, using an empirical formula suggested by Himeno(1981). The case study for the moonpool size has been conducted using theoretical estimation and the experimental method. For the optimization of the moonpool size and effect of the bilge step, 9 cases of its size, both with and without bilge step, were involved in the study. no motion responses, especially roll motion, for the designed LNG-FPSO ships are much lower than those of other drill ships and shuttle tankers. The limit criterions are satisfied. To check the cargo tank and operation tank sizes, we performed a sloshing analysis in the irregular waves which focuses on the pressure distribution on the tank wall and the time history of pressure and free surface for No.2 and 5 tanks of LNG-FPSO with chamfers. Finally, optimum tank sire was estimated.

  • PDF

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • 한국산업융합학회 논문집
    • /
    • 제23권6_1호
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.

해양 석유 생산 및 수송 최적화 문제에 관한 연구 (A Study on the Optimization Problem for Offshore Oil Production and Transportation)

  • 김창수;김시화
    • 한국항해항만학회지
    • /
    • 제39권4호
    • /
    • pp.353-360
    • /
    • 2015
  • 해양 석유 생산은 '해양'이라는 특성에 기인하는 여러 가지 변수를 동반하면서 막대한 비용과 시간을 필요로 한다. 모든 관련된 프로세스는 인명, 환경 그리고 재산의 손실을 줄이기 위한 치밀한 일련의 계획에 의하여 통제된다. 이 논문은 해양 석유 생산 및 수송의 최적화 문제를 다룬다. 문제 영역의 범위를 정의하기 위해 해양 석유 생산 및 수송 네트워크를 제시하고 그 문제를 해결하기 위한 혼합정수계획모형을 구축하였다. 제안된 최적화 모형의 타당성을 확인하기 위해 가상의 해양 유전과 수요 시장을 바탕으로 MS Office Excel의 해찾기를 이용하여 계산실험들을 수행하였다. 해양 석유 생산 및 수송 네트워크 하위 흐름은 해양 유전에서 생산된 원유를 수요 시장으로 배분하는 해사수송문제가 된다. 이 해사수송문제를 해결하기 위해 집합 패킹 모형을 이용하여 구축된 MoDiSS(Model-based DSS in Ship Scheduling)를 사용하였다. 이러한 연구결과들은 실제적인 해양 석유 생산 및 수송 최적화 문제에 의미 있게 적용될 수 있으리라 사료된다.

고주파 벤딩을 통한 직경 245mm 해양플랜트 배관의 변형에 관한 연구 (A Study on the Deformation of O.D 245mm Off-shore Plant Pipe by Induction Bending)

  • 주이환;김남용;김동선;류성기
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.72-78
    • /
    • 2022
  • Bending using high-frequency induction heating is used to bend pipes and sections, and is currently widely applied in industrial fields such as power generation facilities, ships, onshore plants, and offshore plants. The purpose of this study is to study the manufacturing process and design technology of high-frequency bending of pipe to make the best pipe design arrangement. Although various studies are being conducted in the field of high-frequency bending, more research is needed on high-frequency bending of pipes for ship building and offshore plants. The purpose of this study is to review the feasibility of production design using 3D model tool of S3D and AM(PDMS), and to review and improve bending thickness reduction, reduction rate, and roundness.

버켓기초를 가진 해상풍력타워의 선박충돌 거동 (Ship Collision Behaviors of Offshore Wind Tower on Bucket Foundation)

  • 이계희;박준석;홍관영
    • 한국재난정보학회 논문집
    • /
    • 제8권2호
    • /
    • pp.138-147
    • /
    • 2012
  • 본 논문에서는 해상풍력발전타워와 선박충돌에 대한 다양한 매개변수에 해석을 수행하여 선박충돌시 버켓파일로 지지된 기초부와 상부타워의 극한하중에 대한 거동을 분석하였다. 또한 충돌에너지의 변화에 따른 버켓기초의 안정성 여부 및 풍력타워의 에너지 소산능력에 대해 파악하였다. 해석결과 선박이 충돌에너지는 주로 타워의 소성변형에너지에 의해 소산 되었으며 이러한 극한상태의 하중에도 기초부는 충분한 지지력을 보이는 것으로 나타났다.

Case study on operating characteristics of gas fueled ship under the conditions of load variation

  • Chun, Jung-Min;Kang, Ho-Keun;Kim, You-Taek;Jung, Mun-Hwa;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.447-452
    • /
    • 2016
  • The use of gas as fuel, particularly liquefied natural gas (LNG), has increased in recent years owing to its lower sulfur and particulate emissions compared to fuel oil or marine diesel oil. LNG is a low temperature, volatile fuel with very low flash point. The major challenges of using LNG are related to fuel bunkering, storing, and handling during ship operation. The main components of an LNG fuel system are the bunkering equipment, fuel tanks, vaporizers/heaters, pressure build-up units (PBUs), and gas controlling units. Low-pressure dual-fuel (DF) engines are predominant in small LNG-powered vessels and have been operating in many small- and medium-sized ferries or LNG-fueled generators.(Tamura, K., 2010; Esoy, V., 2011[1][2]) Small ships sailing at coast or offshore rarely have continuous operation at constant engine load in contrast to large ships sailing in the ocean. This is because ship operators need to change the engine load frequently due to various obstacles and narrow channels. Therefore, controlling the overall system performance of a gas supply system during transient operations and decision of bunkering time under a very poor infrastructure condition is crucial. In this study, we analyzed the fuel consumption, the system stability, and the dynamic characteristics in supplying fuel gas for operating conditions with frequent engine load changes using a commercial analysis program. For the model ship, we selected the 'Econuri', Asia's first LNG-powered vessel, which is now in operation at Incheon Port of South Korea.

부식과 도장을 고려한 선체잔여수명예측시스템 설계 (Design of Hull Residual Life Prediction System Considering Corrosion and Coating)

  • 박성환;이한민
    • 대한조선학회논문집
    • /
    • 제50권2호
    • /
    • pp.104-110
    • /
    • 2013
  • In this paper, the design procedure and results for 'Residual Life Prediction System Considering Corrosion and Coating' are explained, which is one module of 'Life-cycle Management System of Ship and Offshore Plant's' Operation. This 'Residual Life Prediction System' has two main functions; one is residual life prediction function based on probability processing using corrosion measurement data of ship's major structural members, and another is rust rate prediction function based on visual image processing of inspection photos. The analysis of system user requirements and functions are introduced, and the structure and environment of the developed system are explained.

손상침수로 자세변화된 바지형 선박의 파랑하중해석 (Waveload Analysis for Heeled Barges with Flooded Compartments)

  • 홍도천;홍사영
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.379-387
    • /
    • 2005
  • A ship may suffer sinkage and heel due to flood in a compartment caused by damage on a deck. The motion and waveloads of the heeled ship floating in waves have been analyzed by making use of a three dimensional potential theory taking account of the hydrodynamic pressure in the flooded compartments. The shear forces and bending moments due to radiation-diffraction waves have been calculated by the direct integration of the 3-d hydrodynamic pressure on the outer and inner hulls of floating barges. The motion responses and the relative flow rate across the mean free surface of the water in the flooded compartments are also presented.