• Title/Summary/Keyword: Ship Movement Anomaly

Search Result 2, Processing Time 0.016 seconds

Detection of Ship Movement Anomaly using AIS Data: A Study (AIS 데이터 분석을 통한 이상 거동 선박의 식별에 관한 연구)

  • Oh, Jae-Yong;Kim, Hye-Jin;Park, Se-Kil
    • Journal of Navigation and Port Research
    • /
    • v.42 no.4
    • /
    • pp.277-282
    • /
    • 2018
  • Recently, the Vessel Traffic Service (VTS) coverage has expanded to include coastal areas following the increased attention on vessel traffic safety. However, it has increased the workload on the VTS operators. In some cases, when the traffic volume increases sharply during the rush hour, the VTS operator may not be aware of the risks. Therefore, in this paper, we proposed a new method to recognize ship movement anomalies automatically to support the VTS operator's decision-making. The proposed method generated traffic pattern model without any category information using the unsupervised learning algorithm.. The anomaly score can be calculated by classification and comparison of the trained model. Finally, we reviewed the experimental results using a ship-handling simulator and the actual trajectory data to verify the feasibility of the proposed method.

A Study on the Detection of Ship Movement Anomaly using AIS Data (AIS 데이터 분석을 통한 이상 거동 선박의 식별에 관한 연구)

  • Oh, Jae-Yong;Kim, Hye-Jin;Park, Se-Kil
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.290-291
    • /
    • 2018
  • 최근 해상교통량이 증가하고 연안 항해에 대한 관제 필요성이 요구되면서 선박 교통 관제구역이 점차 확대되는 추세이다. 이러한 관제구역의 확대는 관제사의 업무 부하를 초래하며, 이로 인해 교통 혼잡 시간대와 같이 교통량이 급증하는 경우 관제사가 위험 상황을 인지하지 못하는 상황도 발생하게 된다. 이러한 배경에서 본 논문에서는 관제 업무의 지원을 위해 이상 거동 선박을 자동으로 식별하는 방법을 제안하고자 한다. 제안하는 방법은 기계학습 기술을 기반으로 관제구역 내의 통항 패턴을 모델링하고, 이를 통해 이상 거동 선박을 식별하는 방법으로, 대상 항만의 누적된 AIS 데이터를 이용하여 모델을 학습하며, 실제 항적 및 시뮬레이션 데이터를 이용한 실험을 통해 선박교통관제시스템에의 활용 가능성을 고찰한다.

  • PDF