• 제목/요약/키워드: Ship Block

검색결과 210건 처리시간 0.022초

신뢰도 분석모델을 이용한 대함유도탄 검사주기 결정에 관한 연구 (A Study on Determining the periodic inspection for Anti-Ship Missile by using Reliability Analysis Model)

  • 김대익;전건욱
    • 한국국방경영분석학회지
    • /
    • 제32권2호
    • /
    • pp.92-113
    • /
    • 2006
  • 무기체계는 최근 고도의 신기술과 막대한 비용이 투자되어 첨단화, 정밀화, 장사정화, 은밀화, 복합 기능화의 특징을 가진 고비용 무기체계로 변화하고 있다. 이에 따라 유도무기체계의 경우도 경제적인 운용과 사용자의 안전성을 보장하는 측면에서 고도의 신뢰성이 보장되어야 한다. 따라서 유도무기 체계를 개발하고 생산하는 단계에서의 신뢰도 평가뿐만 아니라 주어진 저장 환경조건이나 운용환경에서의 일정한 저장 신뢰도의 유지를 위한 기준이 제시 되고 이를 유지하기 위한 최적화된 검사주기가 필요하다고 할 수 있다. 본 연구는 현재 해군에서 운용중인 대함 유도탄(Harpoon Block 1)을 대상으로 검사주기 간 고장건수 및 정비현황을 기초로 수학적 기법과 신뢰도 분석 S/W를 활용하여 저장고장률과 MTBF를 도출하고 이를 바탕으로 체계 운용유지를 위한 최적 검사주기를 결정하여 향후 대함 유도무기체계 신뢰도 예측 및 평가를 통한 검사주기 개선방안을 제시하였다.

선형에 따른 전심의 이동에 관한 연구 (A Study on Shifting of Pivoting Point in accordance with Configuration of Ships)

  • 최명식
    • 한국항해학회지
    • /
    • 제10권2호
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF

Automation of block assignment planning using a diagram-based scenario modeling method

  • Hwang, In Hyuck;Kim, Youngmin;Lee, Dong Kun;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.162-174
    • /
    • 2014
  • Most shipbuilding scheduling research so far has focused on the load level on the dock plan. This is because the dock is the least extendable resource in shipyards, and its overloading is difficult to resolve. However, once dock scheduling is completed, making a plan that makes the best use of the rest of the resources in the shipyard to minimize any additional cost is also important. Block assignment planning is one of the midterm planning tasks; it assigns a block to the facility (factory/shop or surface plate) that will actually manufacture the block according to the block characteristics and current situation of the facility. It is one of the most heavily loaded midterm planning tasks and is carried out manually by experienced workers. In this study, a method of representing the block assignment rules using a diagram was suggested through analysis of the existing manual process. A block allocation program was developed which automated the block assignment process according to the rules represented by the diagram. The planning scenario was validated through a case study that compared the manual assignment and two automated block assignment results.

판넬블록 생산관리를 위한 시뮬레이션 기반 조선생산실행시스템 개발 (Development of simulation-based ship production execution system(SPEXS) for a panel block assembly shop)

  • 이광국;김영훈
    • 한국정보통신학회논문지
    • /
    • 제15권11호
    • /
    • pp.2313-2320
    • /
    • 2011
  • 조선소에서 판넬블록 생산공정은 가장 많은 물량을 처리해야 하는 중요하고 복잡한 공정이 고, 모든 선박 및 해양구조물의 하부는 반드시 판넬블록 생산 공정을 거쳐야 하기 때문에 판넬블록 생산공정은 병목공정으로 평가된다. 공정의 생산성을 극대화하기 위해 본 논문에서는 디지털 선박생산에서 가장 중요한 기술 중의 하나인 시뮬레이션과 최적화기법을 활용하여 조선생산실행시스템(SPEXS)을 개발하였고, 판넬블록조립장 적용사례로 SPEXSPanel을 구축하여 향상된 일정계획을 수립하는 효과를 보였다. 더불어 SPEXS-Panel은 지속적인 개선을 통해 야드 생산성 향상에 도움을 줄 수 있을 것으로 기대된다.

정반 배치용 블록 투영 형상 생성에 관한 연구 (A Study on the Generation of Block Projections for the Assembly Shops)

  • 유원선
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.203-211
    • /
    • 2014
  • To raise the industrial competitiveness in the field of ship-building, it is crucially important that the yard should use production facilities and working space effectively. Among the related works, the management of tremendous blocks' number, the limited area of assembly shops and inefficient personnel and facility management still need to be improved in terms of being exposed to a lot of problems. To settle down these conundrums, the various strategies of block arrangement on the assembly floors have been recently presented and in the results, have increasingly began to be utilized in practice. However, it is a wonder that the sampled or approximated block shapes which usually are standardized projections or the geometrically convex contour only have been prevailed until now. In this study, all parts including the panel, stiffeners, outer shells, and all kinds of outfitting equipment are first extracted using the Volume Primitive plug-in module from the ship customized CAD system and then, the presented system constructs a simpler and more compact ship data structure and finally generates the novel projected contours for the block arrangement system using the adaptive concave hull algorithm.

4기 크레인을 이용한 선체블록의 인양력 해석 (Lifting Analysis for Ship Hull Blocks using 4 Cranes)

  • 최경식;김동준
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.98-105
    • /
    • 2004
  • This study focuses on an analytical approach to calculate four crane lifting forces for heavy ship hull blocks considering elongations of lilting slings. Four-crane-lifting is a redundant problem. During lifting procedures, in addition to the force and moment equilibrium equations, a compatibility condition is introduced to determine 4 unknown lifting forces. For verification of the method, a ship hull block with field measurements data is analyzed and the result shows that the information obtained by current method could be useful to engineers to conduct lifting work at shipyards.

A new block assembly method for shipbuilding at sea

  • Zhang, Bilin;Boo, Seung-Hwan;Kim, Jin-Gyun
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.999-1016
    • /
    • 2015
  • In this paper, we introduce a new method for assembly of shipbuilding blocks at sea and present its feasibility focusing on structural safety. The core concept of this method is to assemble ship building blocks by use of bolting, gluing and welding techniques at sea without dock facilities. Due to its independence of dock facilities, shipyard construction capability could be increased considerably by the proposed method. To show the structural safety of this method, a bulk carrier and an oil tanker were employed, and we investigated the structural behavior of those ships to which the new block assembly method was applied. The ship hull models attached with connective parts are analyzed in detail through finite element analyses, and the cargo capacity of the bulk carrier is briefly discussed as well. The results of these studies show the potential for applying this new block assembly method to practical shipbuilding.

선체 Shell FE 모델 내 용접부의 Solid 요소변환 자동화 시스템 (Pre-processing System for Converting Shell to Solid at Selected Weldment in Shell FE Model)

  • 유진선;하윤석
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.11-15
    • /
    • 2016
  • FE analyses for weldment of ship structure are required for various reasons such as stress concentration for bead tow, residual stress and distortion after welding, and hydrogen diffusion for prediction of low temperature crack. These analyses should be done by solid element modeling, but most of ship structures are modeled by shell element. If we are able to make solid element in the shell element FE modeling it is easily to solve the requirement for solid elements in weld analysis of large ship structures. As the nodes of solid element cannot take moments from nodes of shell element, these two kinds of element cannot be used in one model by conventional modeling. The PSCM (Perpendicular shell coupling method) can connect shell to solid. This method uses dummy perpendicular shell element for transferring moment from shell to solid. The target of this study is to develop a FE pre-processing system applicable at welding at ship structure by using PSCM. We also suggested glue-contact technique for controlling element numbers and element qualities and applied it between PSCM and solid element in automatic pre-processing system. The FE weldment modeling through developed pre-processing system will have rational stiffness of adjacent regions. Then FE results can be more reliable when turn-over of ship-block with semi-welded state or ECA (Engineering critical assessment) of weldment in a ship-block are analyzed.

블록 물류 관리를 위한 트랜스포터와 작업 블록 자동 매칭 알고리즘 연구 (A Study on the Automatic Matching Algorithm of Transporter and Working Block for Block Logistics Management)

  • 송진호;박광필;옥진성
    • 대한조선학회논문집
    • /
    • 제59권5호
    • /
    • pp.314-322
    • /
    • 2022
  • During the shipbuilding process, many blocks are moved between shipyard workshops by block carrying vehicles called a transporter. Because block logistics management is one of the essential factors in enhancing productivity, it is necessary to manage block information with the transporter that moves it. Currently, because a large amount of data per day are collected from sensors attached to blocks and transporters via IoT infrastructure installed in shipyards, automated methods are needed to analyze them. Therefore, in this study, we developed an algorithm that can automatically match the transporter and the working block based on the GPS sensor data. By comparing the distance between the transporter and the blocks calculated from the Haversine formula, the block is found which is moved by the transporter. In this process, since the time of the measured data of moving objects is different, the time standard for calculating the distance must be determined. The developed algorithm was verified using actual data provided by the shipyard, and the correct result was confirmed with the distance based on the moving time of the transporter.

시뮬레이션을 이용한 블록조립 공정 능력 분석 (A Simulation-Based Capacity Analysis of a Block-Assembly Process in Ship Production Planning)

  • 송영주;이동건;조성원;우종훈;신종계
    • 대한조선학회논문집
    • /
    • 제46권1호
    • /
    • pp.78-86
    • /
    • 2009
  • A capacity calculation and process analysis is a very important part for the entire ship production planning. Ship's production plan is set up with a concept that the product is produced based on the capacity achievable by the processes while general manufacturing sets up the production plan based on product lead-time. Therefore, in case the calculation of capacity for each process of shipbuilding yard is different from actual conditions, a series of production plan - ship table composition, dual schedule plan and execution schedule plan, etc - may accumulate errors, lose reliability of planning information and cause heavy cost deficit in this course. In particular, in case of new shipbuilding yard, stocks between processes are built up and half blocks are not supplied in timely manner, and that is sometimes due to the clumsiness of the operator but it is more often because of the capacity to execute each process is not logically calculated. Therefore, this paper presents the process to calculate the assembly leadtime and assembly process capacity for shipbuilding yard assembly factory. This paper calculated the block type for calculation of assembly lead time based on block DAP(detailed assembly procedure), and introduced cases that calculate production capacities by assembly surface plate by considering the surface plate occupied area of the blocks that change depending on assembly field area and assembly processes through assembly simulation.