• Title/Summary/Keyword: Ship's Holding power

Search Result 11, Processing Time 0.021 seconds

A Study on the Avoidance of Typhoon 'Maemi' - Mainly on the training ship KAYA - (태풍 매미의 피항에 관한 연구 -가야호를 중심으로 -)

  • Kim, Min-Seok;Kang, Il-Kwon;Kim, Hyeong-Seok;Jeong, Sun-Beom
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.225-231
    • /
    • 2004
  • The power and scale of 950 hPa typhoon "Maemi" which struck the shore of Gosung in Kyungnam Province was same as that of 951 hPa typhoon "Saraho" in 1959. For the purpose of getting the safety of training ship "KAYA", we anchored at Jinhae Bay with riding at two anchors paid out 8 shackles of cable respectively. By the way when wind force being over 30m/s, we could not keep the safety of the ship "KAYA" by means of the holding power of an anchor only. Just by using the main engine moderately, we were able to maintain the security of the ship. The holding the main engine moderately, we were able to maintain the security of the ship. The holding power of an anchor according to the way of anchoring, the quality of sea bottom, the direction and speed of wind and current, and the length of an anchor cable were analyzed. The obtained results are summarized as follows : 1. When riding at two anchors rather than lying at single anchor we could get a good holding power. 2. There was a big difference in holding power according to the quality of the bottom. 3. It would be best anchoring in a soft mud area than in any other place as possible. 4. It would also be desirable to set anchor shackles much more than equipment number prescribed in regulation in order to get safety of a ship providing against typhoon.

A Study on Theoretical Consideration to the Holding Power and Holding Power Coefficient of War Ship Anchor (함정 묘의 파주력과 파주계수에 대한 이론적 고찰에 관한 연구)

  • Lim, Bong-Taek;Ko, Jae-Woo;Kim, Byoung-Suk
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, with the awareness of the limitations set in the currently operated calculations of holding power and the holding power coefficient of anchors of naval ships due to its simple application of a specific value, various factors that impact the holding power and its coefficient were verified based on existing data analysis of literature research and numerous experiment results from anchor manufacturers, research institutes and academic community in order to overcome the aforementioned limitations. In addition, holding power and holding power coefficient were compared and analyzed by the shape of anchors. As a result, we came to know that the holding power of AC-14 type anchor is stronger than that of ASS type anchor or U.S. Navy Standard type anchor which makes it possible to reduce the weight of the anchor and therefore ease the process of naval shipbuilding. Furthermore, we confirmed the fact that U.S. Navy Standard type anchor does not react sensitively to the weight change of the anchor. Lastly, we found out that Danforth type anchor's holding power coefficient is in inverse proportion to the weight. Moreover, instructions for managing anchor are arranged easily for your information. The results of this study is expected to provide anchor - operating naval crew with a reliable theoretical basis pertaining to an anchor's holding power and its coefficient and contribute much for the safety of their act of anchoring.

A Study on the Safety of Anchoring for Ulsan M-10 Anchorage (울산항 M-10 정박지의 정박안전성 연구)

  • KIM, Se-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.291-305
    • /
    • 2009
  • As you known well, Ulsan port is very famous for handling chemical products which occupies about 80% of quantities of all Korean ports. Many ship's operators prefer to handle liquid cargo es at proper anchorages instead of the berth for saving port expenses. Ulsan M-10 anchorage was assigned for handling liquid cargoes, however this anchorage's space is restricted by the oil pipeline which lays under seabed about 400m off from the center of M-10 anchorage, for which we have to consider of the external force and counter force for keeping the safety of anchoring. Where, external force is induced by wind, tidal currents and wave while counter force is induced by holding power of anchor/chain. In this study, author evaluated a method to analyze theoretically the limit of external force condition up to which an anchoring ship can keep her position without dragging, and for which applied to many kinds of combined Ships as mother ship of 50,000 DWT Tanker and 4 sizes of Tanker as alongsided ship.

A Study on the Anchoring Safety Assessment of E-Group Anchorage in Ulsan Port (울산항 E 집단정박지 묘박안전성 평가에 관한 연구)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2014
  • This study suggests the minimum critical external forces based on the assessment of anchoring safety to single anchor situation for representative 8 number of ships in E-group anchorage of Ulsan port. Assessment of anchoring safety is compared holding powers of anchor with external forces of wind, wave and current. Holding powers was reflected materials of seabed, equipment numbers regarding anchor and chain weight, also external forces acting on a hull was calculated considering projected wind area and wetted surface area to the full and ballast conditions respectively. The results of anchoring safety assessments to single anchor showed that the minimum criteria of dragging anchor is a little different from ship's type, size and loading conditions. Bulk carrier can be dragged over the 15m/s of winds and Tanker can be dragged over the 13m/s of winds in case of less than 2knots of currents speed.

Analysis on the Pattern of Dragging Anchor in Actual Ship (실선 계측에 의한 주묘패턴 분석에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Young;Bae, Byung-Deug;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.505-511
    • /
    • 2009
  • Vessels on anchoring are frequently dragged due to the increased area of wind pressure by enlargement of ship's size and sudden gust of winds in recent years. In the view point of the ship's navigators, the proper measurements corresponding to the dragging of anchor should be taken into account concerned about the time for the occurring of dragging by the external forces such as wind and wave, the pattern and speed of dragging and the possibility of collisions with any other vessels or obstacles. In this paper, it was examined the actual dragging anchor in T.S. HANBADA due to the wind and waves. From this case, it was found the critical external forces by which she was begun to dragged comparing the force by the wind, frictional resistance, drifting force and ship motion moment with the holding power. Also, through the analysis of the dragging pattern, it was known the alteration range of heading angle, swinging width and dragging speed etc.

Study on Anchored Safety Improvements for Open Sea Anchorage - Focused on Pohang Port (외해 개방형 정박지의 안전성 향상에 관한 연구 - 포항항 중심으로)

  • Kim, Jeong-Rok;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.233-239
    • /
    • 2015
  • Recently, Due to variable marine accident occurred, problems relating to marine accidents have been raised. Of these accidents, designated anchorage of Korea coastal port, spcially open-sea anchorage, occurred dragging anchor and accidents are likely, due to failure to obtain a valid ship's holding power so that it is the situation unsatisfactory that ensuring the safety of the anchored ship and anchorage systematic safety management stadars for the efficent operation of the anchorage. also in case of open-sea anchorage vulnerable to external force of certain conditions due to geographical location and topographical characteristics of the port, accidents are likely dragging anchor by typoon or suddenly strong wind and secondary accidents are concerned. This paper shows standard of limit external force to ensure the safety anchorage each of ship's size through review marine accidents on Pohang port, also it is determined to be used as a basic reference for anchoring safety and efficient anchorage management.

A Study on the Development of Anchoring Manual for T.S. HANBADA (실습선 한바다호의 묘박 지침 개발에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Typhoons are usually influencing at least 3 or 4 times per year in Korean peninsula and they accompanied with strong winds and heavy rains and then brought tremendous loss of properties and lives. Especially typhoon "MAEMI" resulted in a lot of marine accidents of vessels such as sinking, stranding, collision etc. at anchoring or on berthing in pier. If the typhoon comes up to expected area influencing the incidents, the vessel tries to escape from the route of typhoon or anchor in sheltering anchorage. However, consideration of the anchoring or judgement of ship's safety against strong winds is decided only by the experience of operators without detail evaluation of the safety. Therefore, this paper evaluated the safety of T.S. HANBADA by comparing the external forces with the holding powers. Furthermore, based on this evaluation, the anchoring manual was produced for the maximum endurable wind velocity, the general precautions and the actions taken on the ship with steps.

  • PDF

The Development of the Anchor Dragging Risk Assessment Program (선박 주묘 위험성 판별 프로그램 개발에 관한 연구)

  • Kim, Joo-Sung;Park, Jun-Mo;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.646-653
    • /
    • 2018
  • Marine accidents caused by dragging anchors occur constantly due to enlargement of ships' size and unusual weather conditions. Nevertheless, vessel operators rely on their experience because the calculations of actual holding power and external forces are complex and inconvenient. The purpose of this study was to propose a program for the anchor dragging risk assessment in order to provide crew and VTSO with the information to determine easily the danger of dragging and take appropriate action. The input data in this program were composed of the ship's basic particulars, anchoring condition, and external environment etc. on calculating for the wind pressure, frictional force, drift force, and holding power. Three dragging anchor accidents were applied to the program's data input at the time of the day, then the result was assessed by 'warning', which was verified with a high confidence. As a result, the risk of dragging anchors can be predicted in advance through this program. In further studies, it is necessary to simplify the input data and improve user convenience through automatic input from various equipment.

Study on Improvement of Anchorage Management in Pohang Port (포항항 정박지 개선방안에 관한 연구)

  • Kim, Jeong-Rok;Gug, Seung-Gi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.5-6
    • /
    • 2014
  • Pohang port have specified 19 anchorage and 3 quarantine anchorage, but this anchorage is insufficient required anchorage because the average daily use of more than 40 vessels, also Pohang anchorage have geographical characteristics that are open to offshore northeast direction. Recently, sinking ship accident was caused at Pohang port anchorage by dredging anchor due to strong wind from north or north-east. ${\cdots}$ (중략) ${\cdots}$.

  • PDF

Minimum Wind Speed of Dragging Anchor for Ships in Jinhae Bay Typhoon Refuge (진해만 태풍 피항 선박의 주묘 한계 풍속에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun;Park, Young-Soo;Kong, Gil-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.474-482
    • /
    • 2021
  • An average of two to three typhoons that occur in the Philippines or Taiwan pass through Korea each year owing to the influence of the geographical location and western winds. Because Jinhae Bay is known as Korea's representative typhoon refuge, it is filled with ships during typhoons and later becomes saturated with ships anchored to the surrounding routes. If a strong wind drags an anchored ship, a collision accident may occur because of the short distance between the ships. Therefore, a systematic anchoring safety management of Jinhae Bay is required. In this study, the minimum wind speeds of a dragging anchor based on the water depths of Jinhae Bay anchorages were investigated. When 7-9 shackles were given, the minimum wind speeds were 48-63, 46-61, and 39-54 knots at depths of 20, 35, and 50 m, respectively. As the water depth increased, the length of the cable laid on the sea bed became shorter than 5 m owing to the external force, and the minimum wind speed showed a significant difference of 4-8 knots. In addition, ships with high holding power anchors (AC-14 type) had higher minimum wind speeds than ships with conventional anchors (ASS type). Finally, it was confirmed that at a depth of 50 m, dragging easily occurred even when a high holding power anchor was applied.