• Title/Summary/Keyword: Ship' Cargo Tank

Search Result 73, Processing Time 0.028 seconds

A Study on Docking Analysis for Conventional LNGC (Conventional LNGC의 도킹 해석에 관한 연구)

  • Choi, Joong-Hyo;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.10-15
    • /
    • 2008
  • The proper docking block arrangement, loading condition and structural reinforcement are required to ensure structural safety of ship, when she is in re-docking and launching for inspection or repair. The large reaction force due to narrow bottom tangent area, heavy weight and ballast loading are occurred at aft body and fore body of ship. Especially, in case of LNGC, the strength evaluation is necessary for cargo hold areas including mid-body because tank hydro test is performed in dry-dock. The analysis results and experiences to confirm structural safety for docking of conventional LNGC$(138K{\sim}151.7K)$ are introduced in this paper.

  • PDF

A Study on the Computation of Hull Temperature Distribution and Boil off Ratio of MRV Type LNG Carrier (MRV형 LNG선의 선체온도분포 및 증발률 산정에 관한 연구)

  • 천병일;김용모;김경근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.986-996
    • /
    • 1994
  • Insulation system of LNG carrier has made important roles such as maintaining a proper Boil off Ratio(BOR) for the cargo and avoiding the excessive low temperature of the adjacent inner hull beyond the permissible limit. At the same time, safety and economy of the LNG transportation by the ship are connected with the performance of the insulation system. Also, thermal insulation system of LNG carrier is one of the most advanced technique with the structure analysis of tank, welding and assembling. In this study a computer program is developed to calculate the hull temperature distribution and BOR, which are important factors in thermal design for the Moss Rosenberg Verft spherical tank type LNG carrier. Detailed results for hhull temperature distribution close to LNG tank, BOR and the thickness effect of insulation material are reported in this paper in the range of standare design sea condition.

Structural Safety Assessment of Independent Spherical LNG Tank(3rd report) - Safety assessment of tank system against crygenic temperature - (독립구형 LNG 탱크의 구조안전성 평가(제3보) - 탱크시스템의 저온 안전성 검토 -)

  • Yong-Yun Nam;In-Sik Nho;Ho-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.83-92
    • /
    • 1993
  • This paper describes structural safety assessment techniques against crygenic temperature to design MRV type B LNG tank system. The following items are detail with in detail. (1) Leakage estimation of LNG through the propagating clacks at tank plate was performed and design of the range of catch basin(2ndary barrier) was followed to ensure the safety of ship structures against leaked LNG. (2) Temperature distribution analysis for cargo hold and skirt system was carried out using the steady state heat transfer analysis model for spherical LNG tank system. (3) Thermal stress distribution of skirt and tank system was calculated, where very stiff thermal variation was shwn through item(2) analysis.

  • PDF

Evaluation of the Fatigue Strength and the Mechanical Properties for Cargo Containment System in LNG Ship (LNG선박용 내조시스템 소재의 기계적 특성 및 피로강도 평가)

  • Shim, Hee-Jin;Kim, Min-Tea;Yoon, In-Su;Kim, Yung-Kyun;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1-6
    • /
    • 2007
  • The membrane type LNG(Liquefied Natural Gas) cargo containment system is a special design structure for the large deformation behavior at LNG temperature$(-162^{\circ}C)$. The design of membrane is required great confidence so that membrane can plat role in the tightness of flammable fluid storing. LNG cargo containment is loaded and unloaded LNG between twice and five times in a week. During this process, the membrane has large deformation behavior due to the variation of temperature and pressure to the self weight. In this study, the evaluation of the fatigue strength of membrane is very important to determine the design life of LNG storage tank and to evaluate the mechanical properties at the LNG temperature. Also, in the view point of large deformation, the evaluation method is applied conservatively $\epsilon-N_f$ curve of SUS 304L.

  • PDF

Development of Smart Cargo Level Sensors Including Diagnostics Function for Liquid Cargo Ships (액체운반용 선박을 위한 진단기능을 가지는 스마트 카고 센서 개발)

  • Bae, Hyeon;Kim, Youn-Tai;Park, Dae-Hoon;Kim, Sung-Shin;Choi, Moon-Ho;Jang, Yong-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.341-346
    • /
    • 2008
  • This paper is to develop a monitoring system with diagnosis for smart cargo sensors that is for management and maintenance of the liquid cargo ships. The main goal of the system is to achieve the total automation system of the cargo sensor. By this study, the active smart sensor for the liquid cargo ships is designed and developed that guarantees high-confidence, stability, and durability. The proposed system consists of a monitoring part of the steam pressure, high-level monitoring, over flowing monitoring, gas monitoring, and tank temperature monitoring. The signals transferred from each unit system are used for sensor diagnosis based on confidence and accuracy. Finally, in this study, the total supervisory monitoring system is developed to maintain and manage the cargo effectively based on fault diagnosis and prognosis of the each sensor system.

Vibration Analysis of a Water Tank Structures (접수탱크구조의 진동해석)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-70
    • /
    • 2005
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. Many authors have studied vibration of cylindrical and rectangular tanks structures containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the present paper, coupling effect between panels of tank structure on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region have investigated numerically and experimentally.

  • PDF

A study on Design of Crane Post for Multi-Purpose Cargo vessel (다목적 화물선의 Crane Post설계에 관한연구)

  • Jeon, Tae-Byeong;Im, Chae-Hwan
    • 한국기계연구소 소보
    • /
    • s.16
    • /
    • pp.127-136
    • /
    • 1986
  • Recently deck crane of multi purpose cargo vessel (MPCV) is designed to posi¬tion in side instead of in the center line of the upper deck with a view to reduce the transportation cost and shipbuilding cost by shortening the length of ship. In this paper, the crane post was at first designed according to the crane maker’s specification and parent ship and the structure is analysed with Finite Ele¬ment Method. Through the careful reviews on the result of analysis, the final design of crane post was modified. The crane post is designed as a cylindrical in upper part and hexagonal in lower part instead of cylindrical on the whole as before. The connecting part of crane post is designed with the form of mixture of the cylinderical and hexagonal. Since the center of cylindrical and hexagonal section are not on the same line, it is expected to have the stress concentration. So, in order to attenuate the concentrated stress on the connecting part, the upper and lower parts was stiffened by inserting plate to enlarge the area of welding. The structure of deck part includes the tank side floor which is depend on the lower structure of the crane post that would support the force of the crane post by placing with 1.5 frame interval of the vertical plate.

  • PDF

The Development of a Heat Balance Evaluation Program for the Main Steam Line of LNG Carrier (LNG선 주증기계통의 열평형산전용 전산프로그램 개발)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.854-861
    • /
    • 1998
  • The demand of LNG as a cheap and clean energy which does not cause an environmental problem has sharply been increased in Korea. In general LNG is stored in a cargo tank specially designed as a liquid state below $-162^{\circ}C$. The main engine of a LNG carrier is generally a steam boiler because LNG is a highly flammable fluid with the possibility of explosion. The main engine of a cargo ship has to be capable of the propulsion load and various auxiliary loads for the safe navigation since it is the primary energy source. Therefore the evaluation of a main boiler's energy capacity is a key design point in the planning of LNG carrier's construction. This research is to develop the computational program for the analysis of steam boiler Heat balance for LNG carrier.

  • PDF

An Experimental Study on Compressibility Effect in Sloshing Phenomenon (압축성이 슬로싱 현상에 미치는 영향에 관한 실험적 연구)

  • Park, Jun-Soo;Kim, Hyun-Yi;Lee, Ki-Hyun;Kwon, Sun-Hong;Jeon, Soo-Sung;Jung, Byoung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.12-18
    • /
    • 2009
  • The present study focused on the compressibility of partially filled fluids in a sloshing tank. Filling ratios ranging from 18% to 26% were used to find compressible impact on a vertical wall. The model test was for 1/25 scale of a 138 K LNGC cargo tank. To investigate the two dimensional phenomenon of sloshing, a longitudinal slice model was tested. A high speed camera was used to capture the flow field, as well as the air pocket deformation. The pressure time history synchronized with the video images revealed the entire compressible process. Three typical impact phenomena were observed: hydraulic jump, flip through, and plunging breaker. In particular, the pressure time history and flow pattern details for flip through and plunging breaker are presented.

Optimal design of dual magnetic float type level gauge to detect a specific level (특정 레벨을 검출하기 위한 2단 Magnetic Float 타입 레벨 게이지의 최적 설계에 관한 연구)

  • Kim, Dong-Sok;Han, Jae-Man;Park, Gwan-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.308-316
    • /
    • 2008
  • For the measurement of liquid level in ship's cargo tank, ballast tank, fuel oil tank and fresh water tank, several types of gauge meter are used such as tubular type, magnetic float type, reflex type transparent type and welding pad type. Among them, magnetic float type gauge meter is environmental friendly device because it is free of power source and maintenance. The main obstacle of the device is relatively large error bound. In this paper, finite element method is used to design and analysis of the magnetic float type gauge meter. The operation of reed switch according to the magnetic field has been successfully described and agreed well with experimental measurement. The optimum geometry with combination of permanent magnet and reed switches are designed to achieve 98 % accuracy of fluid level.