• Title/Summary/Keyword: Shingled Module

Search Result 26, Processing Time 0.018 seconds

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari;Cho, Eun-Chel;Cho, Younghyun;Kim, Youngkuk;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2020
  • Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

Optimization of Solar Cell Electrode Structure for Shingled Module (Shingled 모듈 적용을 위한 태양전지 전극 구조 최적화)

  • Oh, Won Je;Park, Ji Su;Hwang, Soo Hyun;Lee, Su Ho;Jeong, Chae Hwan;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.290-294
    • /
    • 2018
  • The shingled photovoltaic module can be produced by joining divided solar cells into a string of busbarless structure and arranging them in series and parallel to produce a module, in order to produce a high output per unit area. This paper reports a study to optimize solar cell electrode structure for shingled photovoltaic module fabrication. The characteristics of each electrode structure were analyzed according to the simulation program as follow: 80.62% fill factor in the six-junction solar cell electrode structure and 19.23% efficiency in the five-junction electrode structure. Therefore, the split electrode structure optimized for high-density and high-output shingled module fabrication is the five-junction solar cell electrode structure.

Fabrication of Shingled Design Bifacial c-Si Photovoltaic Modules (슁글드 디자인 고출력 양면수광형 단결정 실리콘 태양광 모듈 제작)

  • Park, Min-Joon;Kim, Minseob;Shin, Jinho;Byeon, Su-Bin;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Bifacial photovoltaic (PV) technology has received considerable attention in recent years due to the potential to achieve a higher annual energy yield compared to its monofacial PV systems. In this study, we fabricated the bifacial c-Si PV module with a shingled design using the conventional patterned bifacial solar cells. The shingled design PV module has recently attracted attention as a high-power module. Compared to the conventional module, it can have a much more active area due to the busbar-free structure. We employed the transparent backsheet for a light reception at the rear side of the PV module. Finally, we achieved a conversion power of 453.9 W for a 1300 mm × 2000 mm area. Moreover, we perform reliability tests to verify the durability of our Shingled Design Bifacial c-Si Photovoltaic module.

Shingled String for the High Performance Photovoltaic Module (고효율 태양광 모듈 제작을 위한 스트링 공정 최적화)

  • Jee, Hongsub;Moon, Daehan;Song, Jinho;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.119-123
    • /
    • 2018
  • The High Performance Module With The Shingled String Has Several Advantages Such As The Larger Active Area, Higher Open-Circuit Voltage And Smaller Cell To Module (Ctm) Loss. To Obtain Increase Of Power In Pv Shingled Module, The Detailed Condition Of Various Parameters Related To Cutting And Bonding Process Were Investigated In This Study. We Searched The Optimized Cutting Conditions Of Laser Scan Speed, The Number Of Laser-Scribing And Also Bonding Conditions Of Electrically Conductive Adhesives (Eca) By Varying Amount Of Eca, Curing Time And Curing Temperature. The Shingled Pv Module Showed 25.4W of Maxmimum Power At 60 Rpm Of Dipensing Motor Speed, 30 Seconds Of Curing Time And $140^{\circ}C$ Of Curing Temperature, Respectively.

Analysis of Output Characteristics of High-Power Shingled Photovoltaic Module due to Temperature Reduction (고출력 슁글드 태양광 모듈의 온도 저감에 따른 출력 특성 분석)

  • Bae, Jae Sung;Yoo, Jang Won;Jee, Hong Sub;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.439-444
    • /
    • 2020
  • An increase in the temperature of photovoltaic (PV) modules causes reduced power output and shorter lifetime. Because of these characteristics, demands for the heat dissipation of PV modules are increasing. In this study, we attached a heat dissipation sheet to the back sheet of a shingled PV module and observed the temperature changes. The PV shingled module was tested under Standard Test Conditions (STCs; irradiance: 1,000 W/㎡, temperature: 25℃, air mass: 1.5) using a solar radiation tester, wherein the temperature of the PV module was measured by irradiating light for a certain duration. As a result, the temperature of the PV module with the heat dissipation sheet decreased by 3℃ compared to that without a heat dissipation sheet. This indicated that the power loss was caused by a temperature increase of the PV module. In addition, it was confirmed that the primary parameter contributing to the reduced PV module output power was the open circuit voltage (Voc).

Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg (SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Kang, Min Gu;Cho, Hyeon Soo;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.

Fabrication of Shingled Design Solar Module with Controllable Horizontal and Vertical Width (가로세로 폭의 제어가 가능한 슁글드 디자인 태양광 모듈 제조)

  • Min-Joon Park;Minseob Kim;Eunbi Lee;Yu-Jin Kim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.75-78
    • /
    • 2023
  • Recently, the installation of photovoltaic modules in urban areas has been increasing. In particular, the demand for solar modules installed in a limited space is increasing. However, since the crystalline silicon solar module's size is proportional to the solar cell's size, it is difficult to manufacture a module that can be installed in a limited area. In this study, we fabricated a solar module with a shingled design that can control horizontal and vertical width using a bi-directional laser scribing method. We fabricated a string cell with a width of 1/5 compared to the existing shingled design string cells using a bi-directional laser scribing method, and we fabricated a solar module by connecting three strings in parallel. Finally, we achieved a conversion power of 5.521 W at a 103 mm × 320 mm area.

Optimizing Lamination Process for High-Power Shingled Photovoltaic Module (고출력 슁글드 태양광 모듈의 라미네이션 공정조건 최적화)

  • Jeong, Jeongho;Jee, Hongsub;Kim, Junghoon;Choi, Wonyong;Jeong, Chaehwan;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.281-291
    • /
    • 2022
  • Global warming is accelerating due to the use of fossil fuels that have been used continuously for centuries. Now, humankind recognizes its seriousness, and is conducting research on searching for eco-friendly and sustainable energy. In the field of solar energy, which is a kind of eco-friendly and sustainable, many studies are being conducted to enhance the output performance of the module. In this study, the output improvement for the shingled module structure was studied. In order to improve the output performance of the module, the thickness of the encapsulant was increased, and the lamination process conditions have been improved accordingly. After that, the crosslinking rate was analyzed, and the suitability of the lamination process conditions was judged using this. In addition, a peeling test was conducted to analyze the correlation between the adhesion of the encapsulant and the output performance of the module. Finally, the optimization for the encapsulant material and the lamination process conditions for high-power shingled modules was established, and accordingly, the market share of high-power shingled modules in the solar module market can be expected to rise.

A Study on Correlation Peel Strength and the Efficiency of Shingled Modules According to Curing Condition of Electrically Conductive Adhesives (슁글드 모듈에서 경화조건에 따른 ECA 접합강도와 효율의 상관관계에 관한 연구)

  • Jun, Dayeong;Son, Hyoungin;Moon, Jiyeon;Cho, Seonghyeon;Kim, Sung hyun
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2021
  • Shingled module shows high ratio active area per total area due to more efficient packing without inactive space between cells. The module is fabricated by connecting the pre-cut cells into the string using electrically conductive adhesives (ECA). ECAs are used for electric and structural connections to fabricate the shingled modules. In this work, we investigated a correlation between ECA peel strength and the efficiency of pre-cut 5 cells module which are fabricated according to ECA interconnection conditions. The curing conditions are varied to determine whether ECA interconnection properties can affect module properties. As a result of the peel test, the highest peel strength was 1.27 N/mm in the condition of 170℃, the lowest peel strength was 0.89 N/mm in the condition of 130℃. The efficiency was almost constant regardless of the curing conditions at an average of 20%. However, the standard deviation of the fill factor increased as the adhesive strength decreased.

Analysis of Power Characteristics of High-Power Shingled Photovoltaic Module with Color Application (고출력 슁글드 태양광 모듈 컬러 적용에 따른 출력 특성 분석)

  • Kim, Juhwi;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.73-76
    • /
    • 2022
  • BIPV (Building Integrated Photovoltaic) supplemented the minimum area problem required when installing existing solar modules. However, in order to apply it to buildings, research was needed to increase the aesthetics of solar modules and use them as a design. Accordingly, modules with color applied to the entire surface of the photovoltaic module were being developed, but there was a disadvantage of low power. Therefore, by dividing and bonding the cell strips, it was possible to improve the output power by applying a shingled technology in which other divided cells overlap in a busbar region where light couldn't be received. Shingled technology was advantageous for color modules because the front busbar part that degrades aesthetics was removed. In this research, four color shingled solar modules (Green, Yellow, Blue, Gray) were manufactured and power degradation was analyzed by measuring transmittance and reflectance. Gray color had 80.83% transmittance, which was 31.31% higher than Yellow, resulting in a power difference of 4.45 W.