• 제목/요약/키워드: Shifting-Equilibrium

검색결과 18건 처리시간 0.022초

KSR-III 로켓 노즐의 열화학적 성능해석 (Thermochemical Performance Analysis of KSR-III Rocket Nozzle)

  • 최정열;최환석;김영목
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.90-98
    • /
    • 2001
  • Characteristics of high temperature rocket nozzle flow is discussed along with the aspects of computational analysis. Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were discussed, those were coupled with the methods of computational fluid dynamics code. A chemical equilibrium code developed for the analysis of general hydrocarbon fuel was coupled with three approaches of nozzle flow analysis. The approaches were used for the performance prediction of KSR-III Rocket, and compared with the theoretical results from NASA CEA (Chemical Equilibrium with Applications) code.

  • PDF

Numerical Study of Chemical Performance of 30 tonf -class LRE Nozzle of KARI

  • Kang, Ki-Ha;Lee, Dae-Sung;Cho, Deok-Rae;Choi, H.S.;Choi, J.Y.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.448-451
    • /
    • 2008
  • Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were used to rocket nozzle flow, those were coupled with the methods of computational fluid dynamics code. For a design of high temperature rocket nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be an efficient design tool for predicting maximum thermodynamic performance of the nozzle. Frozen fluid analysis presents the minimum performance of the nozzle because of no consideration for the energy recovery. On the other hand, the case of chemical-equilibrium analysis is able to forecast the maximum performance of the nozzle due to consideration for the energy recovery that is produced for the fast reaction velocity compared with velocity of moving fluid. In this study, using the chemical equilibrium flow analysis code that is combined the modified frozen-equilibrium and the chemical-equilibrium. In order to understand the thermochemical characteristic components and the accompanying energy recovery, shifting-equilibrium flow analysis was carried out for the 30 $ton_f$-class KARI liquid rocket engine nozzle together with frozen flow. The performance evaluation based on the 30 $ton_f$-class KARI LRE nozzle flow analyses will provide an understanding of the thermochemical process in the nozzle and performances of nozzle.

  • PDF

로켓 노즐 유동의 열/화학적 특징 및 해석 기법 (Thermochemcial Characteristics of Rocket Nozzle Flow and Methods of Analysis)

  • 최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.144-148
    • /
    • 2001
  • Characteristics of high temperature rocket nozzle flow is discussed along with the aspects of computational analysis. Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were discussed those were coupled with the methods of computational fluid dynamics. A chemical equilibrium code developed for the analysis of general hydrocarbon fuel was coupled with three approaches of nozzle flow analysis, and a test was made for a bell nozzle at typical operation condition. As a results, the characteristics of the approaches were discussed in aspects of rocket performance, thermal analysis and computational efficiency.

  • PDF

정전기력을 이용한 미소기전 구동기의 고유치 변화 해석에 관한 연구 (Numerical Approach for Frequency-Shifting Analysis of Electrostatic Micro-Mechanial Actuator)

  • 이완술;권기찬;김봉규;조지현;윤성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.854-859
    • /
    • 2001
  • An eigenvalue analysis of a tunable micro-mechanical actuator is presented. The actuator is modeled as a continuum structure. The eigenvalue modified by the tuning voltage is computed through the linearization of the relation between the electrostatic force and the displacement at the equilibrium. A staggered algorithm is employed to perform the coupled analysis of the electrostatic and elastic fields. The stiffness matrix of the actuator is modified at this equilibrium state. The displacement field is perturbed using an eigenmode profile of the actuator. The configuration change of the actuator due to perturbation modifies the electrostatic field and thus the electrostatic force. The equivalent stiffness matrix corresponding to the perturbation and the change in the electrostatic force is then added to stiffness matrix in order to explain natural frequency shifting. The numerical examples are presented and compared with the experiments in the literatures.

  • PDF

KARI 30톤급 액체로켓엔진 노즐 유동 화학 반응 해석 (Chemical Reacting Flow Analysis of the 30 tonf - class KARl LRE Nozzle)

  • 이대성;강기하;조덕래;최정열;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.105-109
    • /
    • 2007
  • 로켓 노즐 유동해석에는, 전산 유체 역학 코드와 결합된 동결 유동 해석, 화학 평형 해석, 화학 비평형 해석이 사용되어진다. 고온 로켓 엔진 노즐의 설계에서, 동결 유동 해법과 동일한 수치적 특징을 가지는 화학평형 해석은 노즐의 열역학적 최대 성능을 예측하는 효율적인 설계 도구가 될 수 있다. 본 연구에서는 30톤급 KARI 액체 로켓 엔진 노즐에 대하여 동결유동 해석 및 화학평형 유동 해석을 수행하였다. 유동 해석 결과에 기초한 30톤급 KARI 액체 로켓 엔진 성능 평가는 노즐에서의 열화학적 특성에 대한 이해와 노즐의 성능을 제공할 것이다.

  • PDF

KARI 30톤급 액체 로켓 엔진 노즐 유동 화학 평형 해석 (Chemical Equilbrium Analysis of the $30\;ton_f$ - class KARI LRE Nozzle Flow)

  • 이대성;강기하;조덕래;최정열;최환석
    • 한국추진공학회지
    • /
    • 제12권3호
    • /
    • pp.9-15
    • /
    • 2008
  • 고고도 추진 기관으로 개발되고 있는 항공우주연구원의 30톤급 액체 로켓 엔진 노즐 성능의 신뢰성 있는 성능 예측을 위하여 화학적 동결 및 평형 유동 해석을 수행하였다. 해석은 이전의 연구에서 개발된 해석 코드를 보완하여 수행하였다. 비평형 해석이 가장 신뢰할 만한 방법이기는 하지만 수렴특성과 불확실성을 고려할 때 연계된 동결 및 평형 해석이 비용측면에서 효율적인 방법임을 확인 할 수 있었다. 이 해석으로부터 노즐 유동의 팽창 과정에서 나타나는 화학적 재결합 효과에 의한 열 및 운동에너지의 회복 및 점성 효과를 고려한 신뢰성 있는 성능 예측을 할 수 있었다.

Shifting Paradigms in Polymer Crystallization

  • Muthukumar, M.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.108-108
    • /
    • 2006
  • The role of conformational entropy of polymer chains in polymer crystallization is investigated by molecular modeling and theory. The entropy of folded loops dominates at experimentally relevant temperatures to dictate short equilibrium lamellar thicknesses, which are much smaller than the extended chain thickness. Also the entropic barriers control the kinetics of polymer crystallization. These results based on chain entropy are different from the classical views of how polymer chains crystallize.

  • PDF

해운산업에 대한 정부지원의 타당성 검토 (The Appropriatness of Government Support of Shipping Industry ; A General Equilibrium Approach)

  • 정봉민
    • 대한교통학회지
    • /
    • 제8권2호
    • /
    • pp.27-41
    • /
    • 1990
  • In this study the economic impacts of government support of shipping industry in the labor rich country are appraised in a general equilibrium model. Shipping industry subsidies (which are supposed to be supplied by lump-sum tax) will decrease disposable income by shifting productive resources from traded goods to the comparatively disadvantageous transport sector, and at the same time reduce the implicit tariff effect by lowering transport costs. The net effect of shipping industry subsidies is to increase social welfare because the latter positive effect of shipping industry subsidies is to increase social welfare because the latter positive effect dominates the former negative effect. Such an increase in social welfare can never be expected from competitive traded goods industry subsidies in the case of which social welfare will actually decrease because of inefficient resource allocation resulting from the subsidies. In addition it is worth noting that the subsidies on the most capital intensive shipping industry will rectify unevenness in income distribution by raising relative price of labor contrary to subsidies on capital intensive traded goods.

  • PDF

Cupric Ion Species in Cu(II)-Exchanged Mesoporous MCM-41 Gallosilicate Determined by Electron Spin Resonance Studies

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • 한국자기공명학회논문지
    • /
    • 제1권2호
    • /
    • pp.126-140
    • /
    • 1997
  • Mesoporous MCM-41 gallosilicate material was synthesized through shifting through shifting gallosilicate polymer equilibrium towards a MCM-41 phase by addition of acid. The location of Cu(II) exchanged into MCM-41 and its interaction with various adsorbate molecules were investigated by electron spin responance and electron spin echo modulation spectroscopies. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules. This species is located in a cylindrical channel and rotates rapidly at room temperature. Evacuation at room temperature removes three of these water molecules, leaving the Cu (II) coordinated to three water molecules and anchored to oxygens in the channel wall. Dehydration at 45$0^{\circ}C$ produces one Cu (II) species located in the inner surface of a channel as evidenced by broadening of its ESR lines by oxygen. Adsorption of polar molecules such as water, methanol and ammonia on dehydrated CuNa-MCM-41 gallosilicate material causes changes in the ESR spectrum of Cu (II), indicating the complex formation with these adsorbates. Cu (II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM data like upon water adsorption. Cu(II) also forms a complex containing four molecules of ammonia based on resolved nitrogen superhyperfine interaction.

  • PDF

Low Spin-Casting Solution Temperatures Enhance the Molecular Ordering in Polythiophene Films

  • Lee, Wi Hyoung;Lee, Hwa Sung;Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1491-1494
    • /
    • 2014
  • High-crystallinity poly(3-hexylthiophene) (P3HT) thin films were prepared by aging the precursor solutions, prepared using a good solvent, chloroform, at low temperatures prior to spin-casting. Lower solution temperatures significantly improved the molecular ordering in the spin-cast P3HT films and, therefore, the electrical properties of field-effect transistors prepared using these films. Solution cooling enhanced the electrical properties by shifting the P3HT configuration equilibrium away from random coils and toward more ordered aggregates. At room temperature, the P3HT molecules were completely solvated in chloroform and adopted a random coil conformation. Upon cooling, however, the chloroform poorly solvated the P3HT molecules, favoring the formation of ordered P3HT aggregates, which then yielded more highly crystalline molecular ordering in the P3HT thin films produced from the solution.