• 제목/요약/키워드: Shielding materials

검색결과 563건 처리시간 0.029초

Development and application analysis of high-energy neutron radiation shielding materials from tungsten boron polyethylene

  • Qiankun Shao;Qingjun Zhu;Yuling Wang;Shaobao Kuang;Jie Bao;Songlin Liu
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2153-2162
    • /
    • 2024
  • The purpose of this study is to develop a high-energy neutron shielding material applied in proton therapy environment. Composite shielding material consisting of 10.00 wt% boron carbide particles (B4C), 13.64 wt% surface-modified cross-linked polyethylene (PE), and 76.36 wt% tungsten particles were fabricated by hot-pressure sintering method, where the optimal ratio of the composite is determined by the shielding effect under the neutron field generated in typical proton therapy environment. The results of Differential Scanning Calorimetry measurements (DSC) and tensile experiment show that the composite has good thermal and mechanical properties. In addition, the high energy-neutron shielding performance of the developed material was evaluated using cyclotron proton accelerator with 100 MeV proton. The simulation shows a 99.99% decrease in fast neutron injection after 44 cm shielding, and the experiment result show a 99.70% decrease. Finally, the shielding effect of replacing part of the shielding material of the proton therapy hall with the developed material was simulated, and the results showed that the total neutron injection decreased to 0.99‰ and the neutron dose reduced to 1.10‰ before the enhanced shielding. In summary, the developed material is expected to serve as a shielding enhancement material in the proton therapy environment.

방사선차폐물질(放射線遮蔽物質)에서 발생(發生)하는 측방산란선(側方散亂線)의 측정(測定) (The Relationship of the Filtration and the Side-scattered Dose in Verious Radiation Shielding Materials)

  • 허준;김창균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제7권1호
    • /
    • pp.35-40
    • /
    • 1984
  • Side-direction scattered dose from various radiation shielding materials was measured at 50cm distance from the central beam of primary ray by used several kinds of added filters for a x-ray deep therapeutic installation, the obtained results were as follows : 1. Dose rate by tube voltage was more increased at heavy filtration than light filtration. 2. Scattered doses produced by constant tube voltage in all shielding materials were decreased at heavier filtration. 3. Scattered doses produced by constant shielding material in all tube voltages were decreased at heavier filtration.

  • PDF

전기전도성 분말과 알루미늄 코팅 유리섬유를 사용한 자동차용 크래쉬패드의 전자파 차폐 특성에 관한 연구 (A Study on the Electromagnetic Shielding Characteristics of Crash Pad Using Electrically Conductive Powders and Al-coated Glass Fiber as Filler in Automotive)

  • 조홍;정선경;김병우
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.124-130
    • /
    • 2014
  • The automotive industry is moving from the internal combustion engine to electric drive motors. Electric motors uses a high voltage system requiring the development of resources and components to shield the system. Therefore, in this study, we analyze electromagnetic interference (EMI) shielding effectiveness (SE) characteristics of an auto crash pad according to the ratio of electrically conductive materials and propylene. In order to combine good mechanical characteristics and electromagnetic shielding of the automotive crash pad, metal-coated glass fiber (MGF) manufacturing methods are introduced and compared with powder-type methods. Through this study, among MGF methods, we suggest that the chopping method is the most effective shielding method.

Effect of Heat Treatment on Radiation Shielding Properties of Concretes

  • Singh, Vishwanath P.;Tekin, Huseyin O.;Badiger, Nagappa M.;Manici, Tubga;Altunsoy, Elif E.
    • Journal of Radiation Protection and Research
    • /
    • 제43권1호
    • /
    • pp.20-28
    • /
    • 2018
  • Background: Heat energy produced in nuclear reactors and nuclear fuel cycle facilities interactions modifies the physical properties of the shielding materials containing water content. Therefore, in the present paper, effect of the heat on shielding effectiveness of the concretes is investigated for gamma and neutron. The mass attenuation coefficients, effective atomic numbers, fast neutron removal cross-section and exposure buildup factors. Materials and Methods: The mass attenuation coefficients, effective atomic numbers, fast neutron removal cross-section and exposure buildup factors of ordinary and heavy concretes were investigated using NIST data of XCOM program and Geometric Progression method. Results and Discussion: The improvement in shielding effectiveness for photon and reduction in fast neutron for ordinary concrete was observed. The change in the neutron shielding effectiveness was insignificant. Conclusion: The present investigation on interaction of gamma and neutron radiation would be very useful for assessment of shielding efficiency of the concrete used in high temperature applications such as reactors.

Effect of different tungsten compound reinforcements on the electromagnetic radiation shielding properties of neopentyl glycol polyester

  • Can, Omer;Belgin, Ezgi Eren;Aycik, Gul Asiye
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1642-1651
    • /
    • 2021
  • In this study, isophtalic neopentyl glycol polyester (NPG-PES) based composites with different loading ratios of pure tungsten metal (W), tungsten (VI) oxide (WO3), tungsten boron (WB) and tungsten carbide (WC) composites were prepared as alternative shielding materials for ionizing electromagnetic radiation (IEMR) shielding. Structural characterizations of the composites were done. Gamma spectrometric analysis of composites for 80-2000 keV energy range was performed and their usability as IEMR shielding was discussed. As a result, the produced composites showed a shielding performance of 60-100% of the lead (the most widely used IEMR shielding material) depending on the reinforcement material, reinforcement loading rate and experimental conditions. Thus, it was reported that produced composites could be an alternative to lead shieldings that have several disadvantages as toxic properties, difficulty of processing and inelasticity.

고 에너지 양성자 가속기에서 생성되는 2차 방사선의 효과적인 차폐에 관한 연구 (Study on Effective Shielding of Secondary Radiation Generated by High Energy Proton Accelerator)

  • 배상일;김정훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.383-388
    • /
    • 2020
  • High-energy proton accelerators continue to be increasingly used in medical, research and industrial settings. However, due to the high energy of protons, a large number of secondary radiation occurs. Among them, neutrons are accompanied by difficulties of shielding due to various energy distribution and permeability. So In this study, we propose a shielding method that can shield neutrons most efficiently by using multiple-shielding material used as a decelerating agent or absorbent as well as a single concrete shielding. The flux of secondary neutrons showed a greater decrease in the flux rate when heavy concrete was used than in the case of ordinary concrete, and the maximum flux reduction was observed at the front position when using multiple shields. Multiple shielding can increase shielding efficiency more than single shielding however, As the thickness of the multiple shielding materials increased, the decline in flux was saturated. The mixture material showed higher shielding results than the polyethylene when using boron carbonate.

전자파차폐효과 측정시스템의 구현 (Establishment of the Electromagnetic Shielding Effectiveness Measurement System)

  • 정연춘;강태원;정낙삼
    • 한국전자파학회지:전자파기술
    • /
    • 제4권3호
    • /
    • pp.45-53
    • /
    • 1993
  • 재료의 전자파차폐효과는 일정한 송신전력에 대해 측정치구 내에 차폐재료가 놓여 있을 때와 없을 때에 수신 되는 수신전력의 차를 측정하므로써 결정된다. 구현된 전자파차폐효과 측정시스댐은 다양한 측정치구를 이용하고, 트랙킹신호원, 스펙트럼분석기, 스텝감쇠기, 고주파스위치, 신호증폭기 동을 사용하였으며, 퍼스날컴퓨터에 의해 측정이 자동으로 이루어지도록 설계되었다. 특히 고주파스위치와 쌍방향성결합기를 이용하여 한대의 스펙트럼분석기를 사용하여 입사전력, 반사전력, 투과전력을 측정할 수 있어 재료의 전자파차폐효과 측정은 물론, 차폐 특성에 관한 분석도 가능하여 재료의 설계에도 활용될 수 있다. 구현된 측정시스댐은 10 MHz~1 G GHz의 주파수대역에서 120 dB 이상의 동작영역을 가지며, 각종의 복합재료의 전자파차폐효과를 효과적으로 측정할 수 있다.

  • PDF

Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals

  • Islam G. Alhindawy;Hany Gamal;Aljawhara.H. Almuqrin;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1885-1891
    • /
    • 2023
  • The present work aims to fabricate Na1+xZr2SixP3-xO12 compound at various calcination temperatures based on the zircon mineral. The fabricated compound was calcinated at 250, 500, and 1000℃. The effect of calcination temperature on the structure, crystal phase, and radiation shielding properties was studied for the fabricated compound. The X-ray diffraction diffractometer demonstrates that, the monoclinic crystal phase appeared at a calcination temperature of 250℃ and 500℃ is totally transformed to a high-symmetry hexagonal crystal phase under a calcination temperature of 1000℃. The radiation shielding capacity was also qualified for the fabricated compounds using the Monte Carlo N-Particle transport code in the g-photons energy interval between 15keV and 122keV. The impacts of calcination temperature on the g-ray shielding behavior were clarified in the present study, where the linear attenuation coefficient was enhanced by 218% at energy of 122keV, when the calcination temperature increased from 250 to 1000℃, respectively.

금속 3D 프린팅을 통한 맞춤형 차폐블록 제작에 사용되는 차폐 재료 검증 (Verification of Shielding Materials for Customized Block on Metal 3D Printing)

  • 정경환;한동희;김장오;최현준;백철하
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.25-30
    • /
    • 2023
  • 의료분야에 3D 프린팅 기술이 활용됨에 따라 금속 재료에 대한 관심이 높아지고 있다. 방사선종양학과에서는 전자선 치료 시 환자의 정상조직에 대한 불필요한 피폭을 차폐하기 위해 차폐블록을 사용하고 있다. 하지만, 납(Lead)과 카드뮴(Cadmium) 같은 중금속 물질의 취급, 숙련도에 따른 재현성과 배치의 불확실성 등에 대한 문제점이 보고되고 있다. 본 연구에서는 금속 3D 프린팅에 사용될 수 있는 재료별 물리적 특성 및 방사선량을 분석하여 전자선 치료 시 활용할 수 있는 맞춤형 차폐블록을 개발하고자 한다. 후보 재료는 알루미늄 합금(d = 2.68 g/cm3), 티타늄 합금(d = 4.42 g/cm3), 코발트 크롬 합금(d = 8.3 g/cm3)을 선별하였다. 10 × 10 cm2 조사면, 6, 9, 12, 16 Me V 에너지로 몬테카를로 시뮬레이션을 이용하여 차폐율 95% 지점의 두께를 도출하였다. 시뮬레이션 결과, 금속 3D 프린팅 재료 중 코발트 크롬 합금(d = 8.35 g/cm3)이 에너지별 차폐두께에서 기존 차폐블록(d = 9.4 g/cm3)과 유사하였다. 향후 금속 3D 프린팅으로 제작한 맞춤형 차폐블록을 이용하여 임상에서의 유용성 검증 평가 및 다양한 방사선 치료계획 조건 등을 통한 실험 검증이 필요할 것으로 사료된다.

도전성(導電性) 분체(粉體)의 전자차폐(電磁遮蔽)에 관한 연구(硏究) (A Study on the Electromagnetic Shielding of Conductive Powder)

  • 김동진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.244-249
    • /
    • 2004
  • In this paper, shielding effectiveness(SE) of the shielding paint of electromagnetic(EM) waves was investigated with actual experiments. The shielding paint used in this study were made of powder of conductive materials - Ag, Cu, Al, Sn, Ni. Cr, Graphite and Charcoal etc. with a solubility in oil and water. Also, the paper was used as a base sheet. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, nickel were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied about the EM shielding paint. The SE strongly depended on the electric resistance by density of painting particles. SE increased as the density of particles was increasing.

  • PDF