• Title/Summary/Keyword: Shield tunnelling

Search Result 167, Processing Time 0.026 seconds

Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels (터널식 전력구를 위한 순굴진율 모델 개발 및 이를 활용한 쉴드TBM 최적운전 조건 제안)

  • Kim, Jeong-Ju;Ryu, Hui-Hwan;Kim, Gyeong-Yeol;Hong, Seong-Yeon;Jeong, Ju-Hwan;Bae, Du-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.623-641
    • /
    • 2020
  • About 5 km length of tunnels were constructed by mechanized tunnelling method using closed type shield TBM. In order to avoid construction delay problems for ensuring timely electricity transmission, it is necessary to increase the prediction accuracy of the excavation process involving machines according to rock mass types. This is important to corroborate the project duration and optimum operation for various considerations involved in the machine. So, full-scale tunnelling tests were performed for developing the advance rate model to be appropriately used for 3.6 m diameter shield TBM. About 100 test cases were established and performed using various operational parameters such as thrust force and rotational speed of cuttterhead in representative uniaxial compressive strengths. Accordingly, relationships between normal force and penetration depth and, between UCS and torque were suggested which consider UCS and thrust force conditions according to weathered, soft, hard rocks. Capacity analysis of cutterhead was performed and optimum operational conditions were also suggested based on the developed model. Based on this study, it can be expected that the project construction duration can be reduced and users can benefit from the provision of earlier service.

A basic study on the mixing bar interaction efficiency in shield TBM chamber (Shield TBM 챔버 내 mixing bar 교반 효율에 대한 기본연구)

  • Hwang, Beoung-Hyeon;Kim, Sang-Hwan;Lee, Kyung-Heon;An, Jun-Kyu;Cho, Sung-Woo;Kim, Yeon-Deok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • This study is the basic study for improving the range of influence and potency of mixing bars in the chamber of Shield TBM. Currently, there are many studies on disk cutters, cutter bits and segments in the study of the domestic Shield TBM. However, studies that mix soil and rocks that come from the membrane during the Shield TBM excavation and scatter them with screw conveyors are not as good as those abroad. In this study, the existing Shield TBM Chamber was manufactured as a miniature and the experiment. Inside the chamber, different sizes (4 mm, 6 mm, 8 mm, 10 mm) and colors (black, white, red, and blue) were used to form layers. This experiment was carried out by different shapes and sizes of RPM and mixing bars. In addition, the difference between a miniature model and a reclining one was checked to determine the effect of the direction of gravity on the mixing efficiency. This was done in the same way for all other conditions other than differences in the direction of gravity. Through this experiment, we identified the orientation of the chamber model, the size and shape of the mixing bar inside, and the mixing effect and torque depending on RPM. A comparative review of the mixing effect and torque confirmed that the shape and size of the mixing bar affect the mixing of samples, and that the direction of gravity affects torque.

A Study of Interactions Between Perpendicularly Spaced Tunnels (상하교차터널의 상호거동에 대한 연구)

  • Kim, Sang-Hwan;Lee, Hyung-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.273-280
    • /
    • 2003
  • This paper describes a study of the effect of shield tunnel construction on the liners of nearby existing perpendicular tunnels. The research programme investigated the influence of tunnel proximity and alignment, liner stiffness on the nature of the interactions between closely spaced tunnels in clay. A total of two sets of carefully controlled 1g physical model tests, including the same test for repeatability, were performed. A cylindrical test tank was developed and used to produce clay samples of Speswhite kaolin. In each of the tests, three model tunnels were installed in order to conduct two interaction experiments in one clay sample. The tunnel liners were installed using a model tunnelling machine that was designed and developed to simulate the construction of a full scale shield tunnel. The first tunnel liner was instrumented to investigate its behaviour due to the installation of each of the new tunnels. The interaction mechanisms observed from the physical model tests are discussed and interpreted.

3-Dimensional Numerical Analysis of Crossing Tunnel under Railroad using RPS Method (RPS공법을 이용한 철도횡단터널의 3차원 수치해석)

  • Shin Eun-Chul;Kim Jung-Hyi;Lee Eun-Soo;Roh Jeong-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.454-461
    • /
    • 2005
  • There are many cross tunnelling methods such as NTR, TRCM, Messer Shield, Front Jacking, and Pipe Roof Method. The advantages of adopting RPS(Roof Panel Shield) method in crossing tunnel construction with comparing other existing cross tunnelling method are needed a little space and easy to change the direction of cutting shoe during the construction of pipe roof. The 3-dimensional numerical analysis of RPS was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing railroad tunnel construction.

  • PDF

A numerical study on the effect of train-induced vibration in shield tunnel (쉴드터널 내부에 작용하는 열차진동 영향에 관한 수치해석적 연구)

  • Kwak, C.W.;Park, I.J.;Park, J.B.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.261-267
    • /
    • 2014
  • Various types of external loads can be applied to the tunnel structure. In a shield tunnel, the vibration from the train may affect the behavior of the adjacent ground. In this study, the railway-induced vibration was estimated and applied to the shield tunnel through 3D numerical simulation. The effective stress analysis based on the finite difference method and Finn model was performed to investigate the potential of liquefaction below the tunnel. Furthermore, pore water pressure and displacement were monitored on a time domain; consequently, the liquefaction potential and dynamic response of the shield tunnel were analyzed. Consequently, it is confirmed that the generation of excess pore water pressure by train-induced vibrating load, however, the amount does not meaningfully affect the potential of liquefaction.

Development of a trench shield machine for the near-surface railway construction (저심도 철도 건설을 위한 트렌치 쉴드 장비 개발연구)

  • Lee, So-Oh;Sagong, Myung;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.175-187
    • /
    • 2015
  • In this paper, the development of trench shield machine for near-surface railway construction were presented. The Near-surface railway can be constructed by cut and cover construction method, because it is installed at the depth of 5~7 m below roads. The cut and cover construction method mostly use temporary supports. The limitation of the cut and cover method is high installation cost and long construction period. To overcome these disadvantages, development of the trench shield machine is proposed and expected to shorten the construction time and cost of near-surface railway system. The sliding retaining wall of trench shield equipment replaces the role of temporary support (solider piles and lagging) and excavator equiped to the bottom front of the machine shorten the excavation time. This paper deals with design of the bit attached to the excavator and required capacity of the motor.

The suggestion of tunneling information and detail requirements for EPB shield machine design (토압식 쉴드TBM 장비설계를 위한 설계항목과 세부 요구사양의 구성에 관한 제안)

  • Kim, Ki-Hwan;Kim, Hyouk;Kim, Seong-Cheol;Kang, Si-On;Mun, Cheol-Hwa
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.611-622
    • /
    • 2020
  • Recently, tunneling projects using shield TBM are increasing in Korea, but the information of client for machine design and manufacturing considering the characteristics of the tunneling phase is not formal, and it is difficult to optimized machine for suitable tunneling works. This paper suggest as for reference the required terms that can be used in Korea on the design items and detailed requirements for ordering of EPB shield TBM based on overseas case study. It would be hope that the TBM user can request the overall tunneling plan and required machine specification when ordering TBM, and the TBM supplier can design and manufacturing that is clear condition and suitable machine for the successful project, so that there are no residential civil complaints and for safe tunneling as well, shield TBM tunneling method will be activated.

Analysis of correlation between shield TBM construction field data and settlement measurement data (쉴드 TBM 시공데이터와 지반침하 계측데이터 간 상관성 분석)

  • Jung, Ye-Rim;Nam, Kyoung-Min;Kim, Han-Eol;Ha, Sang-Gui;Yun, Ji-Seok;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.79-94
    • /
    • 2022
  • The demand for tunnel construction is increasing as part of underground space development due to urban saturation. The shield TBM method minimizes vibration and noise and minimizes ground deformation that occurs simultaneously with excavation, and shield TBM is generally applied to tunnel construction in urban areas. The importance of urban ground settlement prediction is increasing day by day, and in the case of shield TBM construction, ground deformation is minimized, but ground settlement due to tunnel excavation inevitably occurs. Therefore, in this study, the correlation between shield TBM, which is highly applicable to urban areas, and ground settlement is analyzed to suggest the shield TBM construction factors that have a major effect on ground settlement. Correlation analysis was performed between the shield TBM construction data and ground settlement measurement data collected at the actual site, and the degree of correlation was expressed as a correlation coefficient "r". As a result, the main construction factors of shield TBM affecting ground settlement were thrust force, torque, chamber pressure, backfill pressure and muck discharge. Based on the results of this study, it is expected to contribute to the presentation of judgment criteria for major construction data so that the ground settlement can be predicted and controlled in advance when operating the shield TBM in the future.

A study on the behaviour of pre-existing single piles to adjacent shield TBM tunnelling from three-dimensional finite element analyses (3차원 유한요소해석을 통한 shield TBM 터널 근접시공에 의한 인접 단독말뚝의 거동에 대한 연구)

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.23-46
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles to adjacent tunnelling by considering the tunnel face pressures and the relative location of pile tips with respect to the tunnel. The numerical modelling has analysed the effect of the face pressures on the pile behaviour. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. The head settlements of the pile (the vertical distance between the pile and the tunnel: 0.25D, where D is the tunnel diameter) directly above the tunnel crown with the face pressure 50% of the in-situ horizontal soil stress at the tunnel springline decreased by about 38% compared to corresponding settlements with a face pressure 25% of the in-situ horizontal soil stress at the tunnel springline. Furthermore, it was found that the smaller the face pressure, the larger the tunnelling-induced ground movements and the axial pile forces were and the higher the degree of the shear strength mobilisation at the pile-soil interface. When the piles were outside the tunnel influence zone, compressive pile forces were developed due to tunnelling. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures and the position of the pile tip relative to the tunnel. In addition, the computed results have been compared with relevant studies previously reported in literature. The behaviour of the piles has been extensively examined and analysed by considering the key features in great detail.

A Study of Applications of DSM in tunnelling to an underground shopping-area (도심지 지하상가 연결통로 DSM(Divided Shield Method)공법 적용사례 연구)

  • Hong, Chang-Soo;Hwang, Dae-Jin;Lee, Kang-Ho;Cho, Keum-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.556-563
    • /
    • 2005
  • Recently, it is used to join an building to an underground shopping-area in urban. When we construct Seo-Cho Complex building which is in Seoul, we also construct an underground passage to the Gangnam underground shopping-area. But it is difficult to excavate in the downtown area, because excavations induce traffic jam and public discontent. Considering safety, a confined area, settlements, we decided to use DSM(Divided Shield Method) which is based on messer shield. This paper will produce our experience and the results provide a useful guide in a connection tunnel

  • PDF