• Title/Summary/Keyword: Shield gases

Search Result 17, Processing Time 0.021 seconds

A Study on Corrosion Properties of welded Alloy 625 for Ship Structure by Shielding Gases Composite Ratio (선체 구조용 Alloy 625의 용접시 보호가스 조성비에 따른 부식특성에 관한 연구)

  • An Jae-Pil;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2005
  • Alloy 625 is used widely in industrial applications such as aeronautical aerospace, chemical, petrochemical and marine applications. Because of a good combination of yield strength. tensile strength, creep strength, excellent fabricability, weldability and good resistance to high temperature corrosion on prolonged exposure to aggressive environments. High qualify weldments for this material are readily produced by commonly used processes. But all of processes are not applicable to this material by reason of unavailability of matching, position or suitable welding filler metals and fluxes may limit the choice of welding processes. Recently, the flux cored wire is developed and applied for the better productivity in several welding position including the vortical position. In this study. the weldability and weldment characteristics of Alloy 625 are evaluated in FCAW weld associated with the several shielding gases($80\%Ar+20\%\;CO_2,\;50\%Ar+50\%\;CO_2.\;100\%\;CO_2$) in viewpoint of welding productivity. The results of the experimental study on corrosive characteristics of Alloy 625 are as follows; There is no remarkable difference among shielding gases. however they has a striking difference among corrosive solutions by results of distinguished density and time of corrosive solution. Generally, the shielding gases($80\%Ar+20\%\;CO_2$) was superior to the other gases on high temperature tensile and a low temperature impact. but all of the shield gases were making satisfactory results on corrosion test.

The Characteristics on Arc Pressure Distribution of TIG Welding with Shield Gas Mixing Ratio (TIG 용접에서의 실드 가스 혼합비에 따른 아크 압력분포 특성)

  • Oh Dong-Soo;Kim Yeong-Sik;Cho Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • Arc pressure is one of important factors in understanding physical arc phenomena. Especially it affects on the penetration, size and shape of TIG welding. Some researches were reported on the effect of arc pressure in low and middle current region. But there are not any research in high current region. The purpose of this study is to investigate the arc pressure distribution with mixing ratio of shield gas such as Ar and He gases. A Cu block with water cooling was specifically designed and used as an anode electrode in order to measure the arc pressure in high current region. Then, the arc pressure distribution was measured with change in welding current and mixing ratio of shield gases. The arc force was obtained by numerically integrating the measured results. As the results, it was shown that the arc pressure was concentrated at the central part of the arc in middle and high current regions when a pure Ar gas was used. In case of Ar + He mixing gas, the arc pressure was much lower than that of pure Ar gas. In addition, it was widely distributed to radial direction.

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (III) -The Effect on Plasma Emission Signals by Shield Gas- (API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (III) - 보호가스가 플라즈마 방사 신호에 미치는 영향 -)

  • Lee, Chang-Je;Kim, Jong-Do;Kim, Yu-Chan
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.60-65
    • /
    • 2013
  • Ar, $N_2$, and He are the conventional kind of shield gas that are used for laser welding. Many researches on the impact of laser welding shield gas have been done, and it is on going until now. However, there are few studies that analyze the changes and differences of the plasma emission signal. Therefore, in this study, we evaluated the change in the penetration characteristics according to the type of shield gas during fiber laser welding impacts to the plasma signal. As a result, if was checked that the difference in molecular weight of Ar, $N_2$, and He affects to the amount of spatter, and also found that the measured plasma radiation signal changes similar to the order of the molecular weight of the gases. Especially, clear change on the signal intensity per each shield gas was measured through RMS, and found that the shield gas was nothing to do with the FFT analyzed result.

Fundamental Study on the Weld Defects and Its Real-time Monitoring Method (레이저 용접시 용접결함의 실시간 모니터링법 개발에 관한 연구)

  • 김종도
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.26-33
    • /
    • 2002
  • This study was undertaken to obtain the fundamental knowledges on the weld deflects and it's realtime monitoring method. The paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurements during $CO_2$ laser welding of STS 304 stainless steel and A5083 aluminum alloy in different welding condition. The characteristic frequencies of plasma and keyhole fluctuations at different welding speed and shield gases were measured and compared with the results of Fourier analyses of temporal AE and LE spectra, and they had considerably good agreement with keyhole and plasma fluctuation. Namely, the low frequency peaks of AE and LE shifted to higher frequency range with the welding speed increase, and leer the argon shield gas it was higher than that in helium and nitrogen gases. The low frequencies dominating in fluctuation spectra of LE probably reflect keyhole opening instability. It is possible to monitor the weld bead deflects by analyzing the acoustic and/or plasma light emission signals.

Effect of shield gas on the characteristics of $CO_2$ laser welded 600MPa grade high strength steel (600MPa급 자동차용 고장렬강판의 $CO_2$ 레이저 용접부의 특성에 미치는 보호가스의 영향)

  • Han Tae-Kyo;Lee Bong-Keun;Kang Chung-Yun
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2004
  • The effect of shield gas on the weldability, mechanical properties and formability of CO2 laser weld joint in 600MPa grade high strength steel was investigated. Bead on plate welds were made under various welding speed and shield gas. Tensile test was carried out under the load of perpendicular and parallel direction to the weld line, Formability of the joint was evaluated by Erichsen test. As the welding speed increases, the porosity fraction decreases. The porosity fraction in the joint used Ar-$50\%He$ mixed gas as a shield gas was lower than that of the joint used Ar gas. Hardness at the weld metal of full penetrated joint was nearly equal to that of water quenched raw metal. In a tensile test under a perpendicular load to the weld axis, strength and elongation of joint produced by optimum condition were nearly equal to those of base metal. However, the strength of joint in a tensile test under a parallel load to weld axis was higher than that of raw metal, but the elongation of joint was lower than that of raw metal. Elongation and formability were further increased by the method of using Ar+He mixed gas as a shield gas as compared with Ar gas. Formabilities of joints were recorded ranging from $58\%\;to\;70\%$ of that of base metal with different shield gases.

  • PDF

An Experimental Study on the Effects of a Radiation Shield on the Thermal Load of a Cryochamber (복사 차폐막이 극저온 용기의 부하에 미치는 영향에 관한 실험적 연극)

  • Kim, Young-Min;Park, Seong-Je;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.365-370
    • /
    • 2005
  • Infrared (lR) detectors are widely used for such applications as thermoelstic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Cryochamber considers the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector Cryochamber with radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation. It is found that the thermal load can be substantially reduced by increasing the number of radiation shield.

  • PDF

A Study on Characteristics of Inconel 625 for Petroleum Application by FCAW Process ; Effect of Shield Gases Change Influence on a Mechanical Properties (석유시추용 인코넬 625강의 FCAW 용접에 관한 연구 ; 보호가스 변화가 기계적 성질에 미치는 영향)

  • PARK KEYUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.96-100
    • /
    • 2004
  • Inconel 625 is useful in a variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to over $1090^{\circ}C$, in combination with good low and high temperature mechanical strength. Rencently this material has also been widely used in offshore processing piping in order to extend the maintenance term and improve the quality of anti-corrosion. In general, high quality weldings for this material are readily produced by commonly used processes. How, not all processes are applicable to this material group of Ni-alloys. Metallurgical or the unavailability of matching, position or suitable welding processes produce a lower quality. Nowadays, the flux cored wire is developed and applied for increased productivity in several welding positions, including the vertical position. In this study, the weldability and weldment characteristics(mechanical properties) of inconel 625 are considered in FCAW(Flux Core Arc Welding) associated with the several shielding gases$(80\%Ar+20\%CO2,\;50\%Ar+50CO2,\;100CO2)$ in view of welding productivity.

A Study on Low Temperature Impact Strength of Inconel 625 for Petroleum Application by FCAW Weld (석유시추용 인코넬 625강의 FCAW용접에 의한 저온 충격강도에 관한 연구)

  • PARK KEYUNG-DONG;AN DO-KEYUNG;JUNG JAE-WOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.356-359
    • /
    • 2004
  • Above all Ni-alloys Inconel 625 is used widely in plate of welding structural materials such as turbine case, a combustor of liner. In general, weldability of Inconel 625 is not well because of poorly liquids of weld metal also it have a broken probability oj the welding crack. In case of FCAW weld process, it is not easy to develope of welding materials, because it is possible only fillet welding at view position of look down except for butt welding. But recently, though it is more used by FCAW process, owing to welding materials worked at the vertical position. the study for FCAW weld of Inconel 625 is actively not yet worked. In this study, the weldability and weld characteristics(mechanical characteristics, corrosive property) of Inconel 625 are considered in FC4W weld associated with the several shielding gases$80\%Ar\;+\;20\%\;CO_2,\;50\%Ar\;+\;50\%\;CO_2,\;100\%\;CO_2$ in viewpoint of welding productivity. The results of impact test are follows; It was evaluated 70J at shielding gase of $100\%\;CO_2$, and obtained about 35J at the other shielding gases. If it was used for parts be required the impact value at the extremely low temperature, it is expected to have the advantage of using the $100\%\;CO_2$ shield gase than the others.

  • PDF

Lab Weldability of Pure Titanium by Nd:YAG Laser (Nd:YAG 레이저를 이용한 순티타늄판의 겹치기 용접성)

  • Kim, Jong-Do;Kwak, Myung-Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.315-322
    • /
    • 2008
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and creep properties in high temperature, which make them using many various fields of application. Especially, pure titanium, which has outstanding resistance for the stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion, brings out to the best material for the heat exchanger, ballast tank, desalination facilities, and so on. Responding to these needs, welding processes for titanium are also being used GTAW, GMAW, PAW, EBW, LBW, resistance welding and diffusion bonding, etc. However, titanium is very active and highly susceptible to embrittlement by oxygen, nitrogen, hydrogen and carbon at high temperature, so it needs to shield the weld metal from the air and these gases during welding by non-active gas. In this study, it was possible to get sound beads without humping and spatter with a decrease of peak power according to increase of pulse width, change of welding speed and overlap rate for heat input control, and shield conditions at pulsed laser welding of titanium plates for Lap welding.

An Experimental Study on the Thermal Load of a Cryochamber with Radiation Shields (복사 차폐막이 설치된 극저온 용기의 열부하 특성에 관한 실험적 연구)

  • Kim, Young-Min;Kang, Byung-Ha;Park, Seong-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Infrared (IR) detectors are widely used for such applications as thermoelastic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal load of a cryochamber is attributed to the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector cryochamber with a radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation.