• Title/Summary/Keyword: Shield TBM method

Search Result 98, Processing Time 0.021 seconds

Case study on slurry performance according to the recycling of slurry TBM filtrate water with coagulant (이수식 TBM의 응집제 사용수 재활용에 따른 슬러리 성능 연구)

  • Han-Byul Kang;Jae-Won Lee;Ju-Hyi Yim;Byung-Cheol Ahn;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.449-461
    • /
    • 2024
  • The use of tunnel boring machine (TBM), a mechanized excavation method with low noise and vibration and high safety compared to NATM method, has increased globally. In particular, slurry shield TBMs are used in subsea and submarine sections because they have an advantage in high pressure compared to EPB (earth pressure balanced) methods. As such, the used water of slurry shield TBMs is discharged through wastewater treatment facilities. In the case of large-scale TBMs, the amount of water used is enormous, so it should be recycled to reduce costs and protect the environment. Various types of additives are used to improve the performance of the slurry treatment plant (STP) and filter press. Among them, coagulants improve the productivity of the filter press by neutralizing the charges on particles. In this study, lab tests were conducted to evaluate the reusability of the used water through the filter press after flocculants were added.

A study on the wear and replacement characteristics of the disc cutter through data analysis of the large diameter slurry shield TBM field (대구경 이수식 쉴드TBM 현장의 데이터 분석을 통한 디스크커터의 마모 및 교체 특성 연구)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.57-78
    • /
    • 2022
  • The disc cutter and cutterbit, which are the most important factors to increase the excavation efficiency of TBM, are key factors in the design and construction of the cutter head. The arrangement, spacing, number, size, and material of disc cutters suitable for the ground conditions determine the success or failure of TBM construction. The disc cutter, which is a representative consumable part in TBM construction, can cause enormous disruption to the construction cost as well as the construction cost unless accurate prediction of wear and replacement cycle is accompanied. Therefore, in this study, the method of calculating the replacement cycle of the disc cutter calculated at the time of design for the slurry shield TBM field, and the depth of wear and replacement location of the disc cutter that occurred during actual construction were compared by analyzing the field data. For a quantitative comparison, weathered soil/weathered rock, soft rock, and hard rock were classified according to the ground in the section showing constant excavation data, and the trajectory of circle was different depending on the location of the disc cutter, so it was compared and analyzed.

TBM mechanical characteristics for NFGM in mechanized tunnelling

  • Pill-Bae Hwang;Beom-Ju kim;Seok-Won Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2024
  • The process of inspecting and replacing cutting tools in a shield tunnel boring machine (TBM) is called cutterhead intervention (CHI) (Farrokh and Kim 2018). Since CHI is performed by a worker who enters the chamber in TBM, the worker is directly exposed to high water pressure and huge water inflow, especially in areas with high ground water levels, causing health problems for the worker and shortening of available working hours (Kindwall 1990). Ham et al. (2022) proposed a method of reducing the water pressure and water inflow by injecting a grout solution into the ground through the shield TBM chamber, and named it the new face grouting method (NFGM). In this study, the TBM mechanical characteristics including the injection pressure of the grout solution and the cutterhead rotation speed were determined for the best performance of the NFGM. To find the appropriate injection pressure, the water inflow volume according to the injection pressure change was measured by using a water inflow test apparatus. A model torque test apparatus was manufactured to find the appropriate cutterhead rotation speed by investigating the change in the status of the grout solution according to the rotation speed change. In addition, to prove the validity of this study, comprehensive water inflow tests were carried out. The results of the tests showed that the injection pressure equal to overburden pressure + (0.10 ~ 0.15) MPa and the cutterhead rotation speed of 0.8 to 1.0 RPM are the most appropriate. In the actual construction site, it is recommended to select an appropriate value within the proposed range while considering the economic feasibility and workability.

Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels (터널식 전력구를 위한 순굴진율 모델 개발 및 이를 활용한 쉴드TBM 최적운전 조건 제안)

  • Kim, Jeong-Ju;Ryu, Hui-Hwan;Kim, Gyeong-Yeol;Hong, Seong-Yeon;Jeong, Ju-Hwan;Bae, Du-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.623-641
    • /
    • 2020
  • About 5 km length of tunnels were constructed by mechanized tunnelling method using closed type shield TBM. In order to avoid construction delay problems for ensuring timely electricity transmission, it is necessary to increase the prediction accuracy of the excavation process involving machines according to rock mass types. This is important to corroborate the project duration and optimum operation for various considerations involved in the machine. So, full-scale tunnelling tests were performed for developing the advance rate model to be appropriately used for 3.6 m diameter shield TBM. About 100 test cases were established and performed using various operational parameters such as thrust force and rotational speed of cuttterhead in representative uniaxial compressive strengths. Accordingly, relationships between normal force and penetration depth and, between UCS and torque were suggested which consider UCS and thrust force conditions according to weathered, soft, hard rocks. Capacity analysis of cutterhead was performed and optimum operational conditions were also suggested based on the developed model. Based on this study, it can be expected that the project construction duration can be reduced and users can benefit from the provision of earlier service.

A study on the soil conditioning behaviour according to mixing method in EPB shield TBM chamber (EPB 쉴드 TBM 챔버 내 혼합방법에 따른 배토상태거동에 대한 연구)

  • Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Cho, Sung-Woo;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.233-252
    • /
    • 2021
  • This paper is a study to improve the efficiency of mixing technology in the shield TBM chamber. Currently, the number of construction cases using the TBM method is increasing in Korea. According to the increasing use of TBM method, research on TBM method such as Disc Cutter, Cutter bit, and Segment also shows an increasing trend. However, there is little research on the mixing efficiency in chamber and chamber. In order to improve the smooth soil treatment and the behavior of the excavated soil, a study was conducted on the change of the mixing efficiency according to the effective mixing bar arrangement in the chamber. In the scale model experiment, the ground was composed using plastic materials of different colors for ease of identification. In addition, the mixing bar arrangement was different and classified into 4 cases, and the particle size distribution was classified into single particle size and multiple particle size, and the experiment was conducted with a total of 8 cases. The rotation speed of the cutter head of all cases was the same as 5 RPM, and the experiment time was also carried out in the same condition, 1 minute and 30 seconds. In order to check the mixing efficiency, samples at the upper, middle (left or right), and lower positions of each case were collected and analyzed. As a result of the scaled-down model experiment, the mixing efficiency of Case 4 and Case 4-1 increased compared to Case 1 and Case 1-1, which are actually used. Accordingly, it is expected that the mixing efficiency can be increased by changing the arrangement of the mixing bar in the chamber, and it is considered to be effective in saving air as the mixing efficiency increases. Therefore, this study is considered to be an important indicator for the use of shield TBM in Korea.

Effect of Segment thickness during Shield TBM tunnelling in case study (쉴드TBM 추진시 세그먼트 두께영향에 대한 현장사례연구)

  • Kim, Sang-Hwan;Kim, Won-Kyung;Lee, Hye-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.311-320
    • /
    • 2013
  • This paper presents the effect of Segment thickness during Shield TBM tunnelling in case study. In order to perform this study, the ground condition developed in the investigation site are reviewed and analysed. It is also carried out the construction problems occurred in the site during Shield TBM tunnelling. Several Segments were broken partially during advance tunnel by jacking pressure. The data surveyed from site are analysed in order to investigate the cause of Segment break. The numerical and analytical evaluations are carried out to examine the effect of Segment behaviour. From the results, it is found that the main causes of Segment break may be the jacking system and Segment thickness. In addition, new jacking technique is suggested to install safely the Segment during advance tunnel by jacking.

Model for predicting ground surface settlement by field measuring and numerical analysis in shield TBM tunnel (현장계측과 수치해석에 의한 쉴드TBM 터널의 지표침하 예측모델)

  • Kim, Seung-Chul;Ahn, Sung-Youll;Lee, Song;Noh, Tae-Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.271-287
    • /
    • 2013
  • In this study, more convenient model(S-model) for predicting ground surface settlement is developed through comparing field monitoring data of the domestic subway applied shield TBM method with conventional equation & numerical analysis. Sample stations are chosen from whole of excavation section and lateral & vertical ground surface settlement characteristic with excavation are analysed. Based on analysis result, through the comparison with actual monitoring data, the model that is possible to compute maximum surface settlement and settlement influence area is suggested with assumption that lateral surface settlement forms are composed relaxed zone and elastic zone. In addition, vertical ground surface settlement patterns with excavation are similar to cubic-function and S-model with assumption that coefficients are function of tunnel diameter and depth is suggested. Consequently, the ground surface settlement patterns are significantly similar to actual monitoring data and numerical method result. Thus, as a result, when tunnels are excavated using sheild TBM through rather soft weathered soil & rock layer, prediction of ground surface settlement with excavation using convenient S-model is practicable.

An overview of several techniques employed to overcome squeezing in mechanized tunnels; A case study

  • Eftekhari, Abbas;Aalianvari, Ali
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-224
    • /
    • 2019
  • Excavation of long tunnels by shielded TBMs is a safe, fast, and efficient method of tunneling that mitigates many risks related to ground conditions. However, long-distance tunneling in great depth through adverse geological conditions brings about limitations in the application of TBMs. Among various harsh geological conditions, squeezing ground as a consequence of tunnel wall and face convergence could lead to cluttered blocking, shield jamming and in some cases failure in the support system. These issues or a combination of them could seriously hinder the performance of TBMs. The technique of excavation has a strong influence on the tunnel response when it is excavated under squeezing conditions. The Golab water conveyance tunnel was excavated by a double-shield TBM. This tunnel passes mainly through metamorphic weak rocks with up to 650 m overburden. These metamorphic rocks (Shales, Slates, Phyllites and Schists) together with some fault zones are incapable of sustaining high tangential stresses. Prediction of the convergence, estimation of the creeping effects and presenting strategies to overcome the squeezing ground are regarded as challenging tasks for the tunneling engineer. In this paper, the squeezing potential of the rock mass is investigated in specific regions by dint of numerical and analytical methods. Subsequently, several operational solutions which were conducted to counteract the challenges are explained in detail.

A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel (토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구)

  • Jung, Jee-Hee;Kim, Byung-Kyu;Chung, Heeyoung;Kim, Hae-Mahn;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2019
  • This paper presents a method to predict ground types ahead of a tunnel face utilizing operational data of the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) when running through soil ground. The time series analysis model which was applicable to predict the mixed ground composed of soils and rocks was modified to be applicable to soil tunnels. Using the modified model, the feasibility on the choice of the soil conditioning materials dependent upon soil types was studied. To do this, a self-organizing map (SOM) clustering was performed. Firstly, it was confirmed that the ground types should be classified based on the percentage of 35% passing through the #200 sieve. Then, the possibility of predicting the ground types by employing the modified model, in which the TBM operational data were analyzed, was studied. The efficacy of the modified model is demonstrated by its 98% accuracy in predicting ground types ten rings ahead of the tunnel face. Especially, the average prediction accuracy was approximately 93% in areas where ground type variations occur.