• 제목/요약/키워드: Shewanella putrefaciens

검색결과 16건 처리시간 0.023초

Enhanced Degradation of TNT and RDX by Bio-reduced Iron Bearing Soil Minerals

  • Cho, Changhyun;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • 제1권1호
    • /
    • pp.1-14
    • /
    • 2012
  • We demonstrated that reductive degradation of 2,4,6-Trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal Demolition Explosive, RDX) can be enhanced by bio-reduced iron-bearing soil minerals (IBSMs) using Shewanella putrefaciens CN32 (CN32). The degradation kinetic rate constant of TNT by bio-reduced magnetite was the highest (0.0039 $h^{-1}$), followed by green rust (0.0022 $h^{-1}$), goethite (0.0017 $h^{-1}$), lepidocrocite (0.0016 $h^{-1}$), and hematite (0.0006 $h^{-1}$). The highest rate constant was obtained by bio-reduced lepidocrocite (0.1811 $h^{-1}$) during RDX degradation, followed by magnetite (0.1700 $h^{-1}$), green rust (0.0757 $h^{-1}$), hematite (0.0495 $h^{-1}$), and goethite (0.0394 $h^{-1}$). Significant increase of Fe(II) was observed during the reductive degradation of TNT and RDX by bio-reduced IBSMs. X-ray diffraction and electron microscope analyses were conducted for identification of degradation mechanism of TNT and RDX in this study. 4-amino-dinitrotoluene were detected as products during TNT degradation, while Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine, Hexahydro-1,3-dinitroso-5-nitro-1,3,5triazine, and Hexahydro-1,3,5-trinitroso-1,3,5-triazine were observed during RDX degradation.

해수 미생물의 환경친화성 플라스틱의 생분해 특성 (Biodegradation Characteristics of the Eco-friendly Plastics by Seawater Microbes)

  • 김말남;윤문경
    • 환경생물
    • /
    • 제26권3호
    • /
    • pp.247-251
    • /
    • 2008
  • 통영, 인천, 군산 및 홍성의 해수 미생물에서 각종 어업용구의 재료로 사용될 수 있는 Mater-Bi$^{(R)}$, PHBV, PBSA 및 PCL의 분해거동을 조사하였다. Acinetobacter lwoffu/junii와 Shewanella algae/putrefaciens는 모든 해수속에 서식하고 있었으며 Eikenella corrodens 역시 비록 YITEK 결과의 신뢰도가 조금 낮은 수준으로 동정되었지만 모든 해수에서 검출되었다. 해수에서는 Mater-Bi$^{(R)}$가 PHBV, PBSA및 PCL보다 더 빠르게 분해되어 토양 환경에서의 분해와는 다른 거동을 나타내었다. 인천의 해수가 이들 플라스틱에 대하여 가장 높은 분해활성을 보였으며 이는 인천의 해수가 가장 많은 수의 total viable count를 포함하고 있는데 일부 기인하는 것으로 사료된다.

Growth Properties of the Iron-reducing Bacteria, Shewanella putrefaciens IR-1 and MR-1 Coupling to Reduction of Fe(III) to Fe(II)

  • Park, Doo-Hyun;Kim, Byung-Hong
    • Journal of Microbiology
    • /
    • 제39권4호
    • /
    • pp.273-278
    • /
    • 2001
  • Shewanela, putrefaciene IR-1 and MR-1 were cultivated by using various combinations electron donor-acceptor, lactate-Fe(III) lactate-nitrate, pyruvate-FE(III), pyruvate-nitrate H$_2$ acetate-Fe(III) and H$_2$-acetate-nitrate. Both strains grew fermentatively on pyruvate and lactate but not on without and electron acceptor. In culture with Fe(III), both astrains grew on pyruvate and lactate but on H$_2$-acetate- CO$_2$. In cultivation with nitrate, both stains grew on pyruvate lactage and on H$_2$-acetate-CO$_2$ The growth yields of IR-1 pyruvate, pyruvate-Fe(III) and lactate-Fe(III) were about 3.4, 3.5, and 3.6(g cell/M substrate), respectively. From the growth properties of both strains on media with Fe(III) as an electron acceptor, the bacterial growth was confirmed not to be increased by addition of Fee(III) as an electron acceptor to the growth medium, which indicates a possibility that the dissimilatory reduction of Fe(III) to Fe(III) may not be coupled to free energy production.

  • PDF

이스라엘 잉어(Cyprinus carpio)에서 Aeromonas veronii 감염증의 증례: phylogenetic analysis와 항생제 내성 (A case of Aeromonas veronii infection in Israeli carp (Cyprinus carpio): phylogenetic analysis and antimicrobial resistance)

  • 이승원;유명조;이해범;신기욱
    • 한국동물위생학회지
    • /
    • 제35권3호
    • /
    • pp.239-243
    • /
    • 2012
  • We reported an outbreak of Aeromonas (A.) veronii responsible for ulcerative dermatitis in Israeli carp (Cyprinus carpio). The major clinical signs were darkening body, abdominal extension, exophthalmos and severe ulcerative necrosis in the skin. The necropsy showed yellowish ascites, necrosis in liver and enlargement of kidney and spleen in the morbid fish. In blood agar for culturing bacteria, three different colonies were identified as A. veronii, Plesimonas shigelloides and Shewanella putrefaciens by phylogenetic identification using 16S rRNA or gyrB gene sequences. A. veronii was the most dominant species among them and was resistant to ampicillin, nalidixic acid and oxytetracycline.

Antagonism of Bacterial Extracellular Metabolites to Freshwater-Fouling Invertebrate Zebra Mussels, Dreissena polymopha

  • Gu, Ji-Dong;Ralph Mitchell
    • Journal of Microbiology
    • /
    • 제39권2호
    • /
    • pp.133-138
    • /
    • 2001
  • We investigated the antagonism of indigenous bacteria isolated from stressed mussels and their extracellular metabolites on the adult zebra mussel, Dreissena polymorpha. Selective bacterial isolates including Aeromonas media, A. salmonicida, A. veronii, and Shewanella putrefaciens, showed strong lethality against adult mussels and 100% mortality was observed within 5 days of incubation. Bacterial metabolites, fractionated and concentrated from stationary-phase culture supernatants of these bacterial isolates, displayed varying degrees of antagonistic effects on zebra mussels. Among the three size fractions examined, <5, 5-10, and >10 kDa, the mast lethal fraction seems to be >10 kDa for three of the four isolates tested. Further chemical analyses of these size fractions revealed that the predominant constituents were polysaccharides and proteins. No 2-keto-3-deoxyoctanoic acid (2-KDO), deoxyribonucleic acids (DNA) or uranic acid were detectable. Extraction of supernatants of two antagonistic isolates with polar solvent suggested that polar molecules are present in the active fraction. Our data suggest that extracellular metabolites produced by antagonistic bacteria are also involved in disease development in zebra mussels and elucidation of the mechanisms involved may offer a novel strategy for control of biofouling invertebrates.

  • PDF

생물환원 철광물촉매에 의한 지하수 내 RDX 환원:군사격장 현장적용 실증결과 (Reduction of RDX in Ground Water by Bio-Regenerated Iron Mineral: Results of Field Verification Test at a Miliary Shooting Range)

  • 공효영;이광표;이종열;경대승;이우진;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.62-72
    • /
    • 2015
  • This study investigates the in-situ implementation of bio-regenerated iron mineral catalyst to remove explosive compounds in ground water at a military shooting range in operation. A bio-regenerated iron mineral catalyst was synthesized using lepidocrocite (iron-bearing soil mineral), iron-reducing bacteria Shewanella putrefaciens CN32, and electron mediator (riboflavin) in the culture medium. This catalyst was then injected periodically in the ground to build a redox active zone acting like permeable reactive barrier through injection wells constructed at a live fire military shooting range. Ground water and core soils were sampled periodically for analysis of explosive compounds, mainly RDX and its metabolites, along with toxicity analysis and REDOX potential measurement. Results suggested that a redox active zone was formed in the subsurface in which contaminated ground water flows through. Concentration of RDX as well as toxicity (% inhibition) of ground water decreased in the downstream compared to those in the upstream while concentration of RDX reduction products increased in the downstream.